skip to main content

Search for: All records

Creators/Authors contains: "Jazizadeh, Farrokh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Human-Building Interaction (HBI) is a convergent field that represents the growing complexities of the dynamic interplay between human experience and intelligence within built environments. This paper provides core definitions, research dimensions, and an overall vision for the future of HBI as developed through consensus among 25 interdisciplinary experts in a series of facilitated workshops. Three primary areas contribute to and require attention in HBI research: humans (human experiences, performance, and well-being), buildings (building design and operations), and technologies (sensing, inference, and awareness). Three critical interdisciplinary research domains intersect these areas: control systems and decision making, trust and collaboration, and modeling and simulation. Finally, at the core, it is vital for HBI research to center on and support equity, privacy, and sustainability. Compelling research questions are posed for each primary area, research domain, and core principle. State-of-the-art methods used in HBI studies are discussed, and examples of original research are offered to illustrate opportunities for the advancement of HBI research.

    more » « less
  2. null (Ed.)
    In recent years, physiological features have gained more attention in developing models of personal thermal comfort for improved and accurate adaptive operation of Human-In-The-Loop (HITL) Heating, Ventilation, and Air-Conditioning (HVAC) systems. Pursuing the identification of effective physiological sensing systems for enhancing flexibility of human-centered and distributed control, using machine learning algorithms, we have investigated how heat flux sensing could improve personal thermal comfort inference under transient ambient conditions. We have explored the variations of heat exchange rates of facial and wrist skin. These areas are often exposed in indoor environments and contribute to the thermoregulation mechanism through skin heat exchange, which we have coupled with variations of skin and ambient temperatures for inference of personal thermal preferences. Adopting an experimental and data analysis methodology, we have evaluated the modeling of personal thermal preference of 18 human subjects for well-known classifiers using different scenarios of learning. The experimental measurements have revealed the differences in personal thermal preferences and how they are reflected in physiological variables. Further, we have shown that heat exchange rates have high potential in improving the performance of personal inference models even compared to the use of skin temperature. 
    more » « less