A Dynamic Controller for Residential Energy Management at the Intersection of Occupant Thermal Comfort and Dynamic Electricity Price
                        
                    - Award ID(s):
- 1663513
- PAR ID:
- 10358491
- Date Published:
- Journal Name:
- ASCE International Conference on Computing in Civil Engineering 2021
- Page Range / eLocation ID:
- 696 to 704
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            We investigate how to model the beliefs of an agent who becomes more aware. We use the framework of Halpern and Rego (2013) by adding probability, and define a notion of a model transition that describes constraints on how, if an agent becomes aware of a new formula φ in state s of a model M, she transitions to state s* in a model M*. We then discuss how such a model can be applied to information disclosure.more » « less
- 
            ABSTRACT Estimates of movement costs are essential for understanding energetic and life-history trade-offs. Although overall dynamic body acceleration (ODBA) derived from accelerometer data is widely used as a proxy for energy expenditure (EE) in free-ranging animals, its utility has not been tested in species that predominately use body rotations or exploit environmental energy for movement. We tested a suite of sensor-derived movement metrics as proxies for EE in two species of albatrosses, which routinely use dynamic soaring to extract energy from the wind to reduce movement costs. Birds were fitted with a combined heart-rate, accelerometer, magnetometer and GPS logger, and relationships between movement metrics and heart rate-derived V̇O2, an indirect measure of EE, were analyzed during different flight and activity modes. When birds were exclusively soaring, a metric derived from angular velocity on the yaw axis provided a useful proxy of EE. Thus, body rotations involved in dynamic soaring have clear energetic costs, albeit considerably lower than those of the muscle contractions required for flapping flight. We found that ODBA was not a useful proxy for EE in albatrosses when birds were exclusively soaring. As albatrosses spend much of their foraging trips soaring, ODBA alone was a poor predictor of EE in albatrosses. Despite the lower percentage of time flapping, the number of flaps was a useful metric when comparing EE across foraging trips. Our findings highlight that alternative metrics, beyond ODBA, may be required to estimate energy expenditure from inertial sensors in animals whose movements involve extensive body rotations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    