skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeff, Dylan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Charge density wave (CDW) ordering has been an important topic of study for a long time owing to its connection with other exotic phases such as superconductivity and magnetism. The$$R{\textrm{Te}}_{3}$$ R Te 3 (R= rare-earth elements) family of materials provides a fertile ground to study the dynamics of CDW in van der Waals layered materials, and the presence of magnetism in these materials allows to explore the interplay among CDW and long range magnetic ordering. Here, we have carried out a high-resolution angle-resolved photoemission spectroscopy (ARPES) study of a CDW material$${\textrm{Gd}}{\textrm{Te}}_{3}$$ Gd Te 3 , which is antiferromagnetic below$$\sim \mathrm {12~K}$$ 12 K , along with thermodynamic, electrical transport, magnetic, and Raman measurements. Our ARPES data show a two-fold symmetric Fermi surface with both gapped and ungapped regions indicative of the partial nesting. The gap is momentum dependent, maximum along$${\overline{\Gamma }}-\mathrm{\overline{Z}}$$ Γ ¯ - Z ¯ and gradually decreases going towards$${\overline{\Gamma }}-\mathrm{\overline{X}}$$ Γ ¯ - X ¯ . Our study provides a platform to study the dynamics of CDW and its interaction with other physical orders in two- and three-dimensions. 
    more » « less
  2. Abstract Niobium chloride (Nb3Cl8) is a layered two-dimensional semiconducting material with many exotic properties including a breathing kagome lattice, a topological flat band in its band structure, and a crystal structure that undergoes a structural and magnetic phase transition at temperatures below 90 K. Despite being a remarkable material with fascinating new physics, the understanding of its phonon properties is at its infancy. In this study, we investigate the phonon dynamics of Nb3Cl8in bulk and few layer flakes using polarized Raman spectroscopy and density-functional theory (DFT) analysis to determine the material’s vibrational modes, as well as their symmetrical representations and atomic displacements. We experimentally resolved 12 phonon modes, five of which areA1gmodes while the remaining seven areEgmodes, which is in strong agreement with our DFT calculation. Layer-dependent results suggest that the Raman peak positions are mostly insensitive to changes in layer thickness, while peak intensity and full width at half maximum are affected. Raman measurements as a function of excitation wavelength (473–785 nm) show a significant increase of the peak intensities when using a 473 nm excitation source, suggesting a near resonant condition. Temperature-dependent Raman experiments carried out above and below the transition temperature did not show any change in the symmetries of the phonon modes, suggesting that the structural phase transition is likely from the high temperatureP 3 m ˉ 1 phase to the low-temperatureR 3 m ˉ phase. Magneto-Raman measurements carried out at 140 and 2 K between −2 and 2 T show that the Raman modes are not magnetically coupled. Overall, our study presented here significantly advances the fundamental understanding of layered Nb3Cl8material which can be further exploited for future applications. 
    more » « less