skip to main content

Search for: All records

Creators/Authors contains: "Jenkins, Odest C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a filtering-based method for semantic mapping to simultaneously detect objects and localize their 6 degree-of-freedom pose. For our method, called Contextual Temporal Mapping (or CT-Map), we represent the semantic map as a belief over object classes and poses across an observed scene. Inference for the semantic mapping problem is then modeled in the form of a Conditional Random Field (CRF). CT-Map is a CRF that considers two forms of relationship potentials to account for contextual relations between objects and temporal consistency of object poses, as well as a measurement potential on observations. A particle filtering algorithm is then proposed to perform inference in the CT-Map model. We demonstrate the efficacy of the CT-Map method with a Michigan Progress Fetch robot equipped with a RGB-D sensor. Our results demonstrate that the particle filtering based inference of CT-Map provides improved object detection and pose estimation with respect to baseline methods that treat observations as independent samples of a scene.
  2. We introduce an interactive system for extracting the geometries of generalized cylinders and cuboids from single or multiple-view point clouds. Our proposed method is intuitive and only requires the object’s silhouettes to be traced by the user. Leveraging the user’s perceptual understanding of what an object looks like, our proposed method is capable of extracting accurate models, even in the presence of occlusion, clutter or incomplete point cloud data, while preserving the original object’s details and scale. We demonstrate the merits of our proposed method through a set of experiments on a public RGB-D dataset. We extracted 16 objects from the dataset using at most two views of each object. Our extracted models represent a high degree of visual similarity to the original objects. Further, we achieved a mean normalized Hausdorff distance of 5.66% when comparing our extracted models with the dataset’s ground truths.
  3. We present the Semantic Robot Programming (SRP) paradigm as a convergence of robot programming by demonstration and semantic mapping. In SRP, a user can directly program a robot manipulator by demonstrating a snapshot of their intended goal scene in workspace. The robot then parses this goal as a scene graph comprised of object poses and inter-object relations, assuming known object geometries. Task and motion planning is then used to realize the user’s goal from an arbitrary initial scene configuration. Even when faced with different initial scene configurations, SRP enables the robot to seamlessly adapt to reach the user’s demonstrated goal. For scene perception, we propose the Discriminatively-Informed Generative Estimation of Scenes and Transforms (DIGEST) method to infer the initial and goal states of the world from RGBD images. The efficacy of SRP with DIGEST perception is demonstrated for the task of tray-setting with a Michigan Progress Fetch robot. Scene perception and task execution are evaluated with a public household occlusion dataset and our cluttered scene dataset.
  4. Indoor robots hold the promise of automatically handling mundane daily tasks, helping to improve access for people with disabilities, and providing on-demand access to remote physical environments. Unfortunately, the ability to understand never-before-seen objects in scenes where new items may be added (e.g., purchased) or altered (e.g., damaged) on a regular basis remains an open challenge for robotics. In this paper, we introduce EURECA, a mixed-initiative system that leverages online crowds of human contributors to help robots robustly identify 3D point cloud segments corresponding to user-referenced objects in near real-time. EURECA allows robots to understand multi-object 3D scenes on-the-fly (in ∼40 seconds) by providing groups of non-expert crowd workers with intelligent tools that can segment objects more quickly (∼70% faster) and more accurately than individuals. More broadly, EURECA introduces the first real-time crowdsourcing tool that addresses the challenge of learning about new objects in real-world settings, creating a new source of data for training robots online, as well as a platform for studying mixed-initiative crowdsourcing workflows for understanding 3D scenes.
  5. Performing robust goal-directed manipulation tasks remains a crucial challenge for autonomous robots. In an ideal case, shared autonomous control of manipulators would allow human users to specify their intent as a goal state and have the robot reason over the actions and motions to achieve this goal. However, realizing this goal remains elusive due to the problem of perceiving the robot’s environment. We address and describe the problem of axiomatic scene estimation for robot manipulation in cluttered scenes which is the estimation of a tree-structured scene graph describing the configuration of objects observed from robot sensing. We propose generative approaches to scene inference (as the axiomatic particle filter, and the axiomatic scene estimation by Markov chain Monte Carlo based sampler) of the robot’s environment as a scene graph. The result from AxScEs estimation are axioms amenable to goal-directed manipulation through symbolic inference for task planning and collision-free motion planning and execution. We demonstrate the results for goal-directed manipulation of multi-object scenes by a PR2 robot.