A major challenge in monocular 3D object detection is the limited diversity and quantity of objects in real datasets. While augmenting real scenes with virtual objects holds promise to improve both the diversity and quantity of the objects, it remains elusive due to the lack of an effective 3D object insertion method in complex real captured scenes. In this work, we study augmenting complex real indoor scenes with virtual objects for monocular 3D object detection. The main challenge is to automatically identify plausible physical properties for virtual assets (e.g., locations, appearances, sizes, etc.) in cluttered real scenes. To address this challenge, we propose a physically plausible indoor 3D object insertion approach to automatically copy virtual objects and paste them into real scenes. The resulting objects in scenes have 3D bounding boxes with plausible physical locations and appearances. In particular, our method first identifies physically feasible locations and poses for the inserted objects to prevent collisions with the existing room layout. Subsequently, it estimates spatially-varying illumination for the insertion location, enabling the immersive blending of the virtual objects into the original scene with plausible appearances and cast shadows. We show that our augmentation method significantly improves existing monocular 3D object models and achieves state-of-the-art performance. For the first time, we demonstrate that a physically plausible 3D object insertion, serving as a generative data augmentation technique, can lead to significant improvements for discriminative downstream tasks such as monocular 3D object detection.
more »
« less
EURECA: Enhanced Understanding of Real Environments via Crowd Assistance
Indoor robots hold the promise of automatically handling mundane daily tasks, helping to improve access for people with disabilities, and providing on-demand access to remote physical environments. Unfortunately, the ability to understand never-before-seen objects in scenes where new items may be added (e.g., purchased) or altered (e.g., damaged) on a regular basis remains an open challenge for robotics. In this paper, we introduce EURECA, a mixed-initiative system that leverages online crowds of human contributors to help robots robustly identify 3D point cloud segments corresponding to user-referenced objects in near real-time. EURECA allows robots to understand multi-object 3D scenes on-the-fly (in ∼40 seconds) by providing groups of non-expert crowd workers with intelligent tools that can segment objects more quickly (∼70% faster) and more accurately than individuals. More broadly, EURECA introduces the first real-time crowdsourcing tool that addresses the challenge of learning about new objects in real-world settings, creating a new source of data for training robots online, as well as a platform for studying mixed-initiative crowdsourcing workflows for understanding 3D scenes.
more »
« less
- Award ID(s):
- 1638047
- PAR ID:
- 10066635
- Date Published:
- Journal Name:
- AAAI Conference on Human Computation (HCOMP 2018)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Video scene analysis is a well-investigated area where researchers have devoted efforts to detect and classify people and objects in the scene. However, real-life scenes are more complex: the intrinsic states of the objects (e.g., machine operating states or human vital signals) are often overlooked by vision-based scene analysis. Recent work has proposed a radio frequency (RF) sensing technique, wireless vibrometry, that employs wireless signals to sense subtle vibrations from the objects and infer their internal states. We envision that the combination of video scene analysis with wireless vibrometry form a more comprehensive understanding of the scene, namely "rich scene analysis". However, the RF sensors used in wireless vibrometry only provide time series, and it is challenging to associate these time series data with multiple real-world objects. We propose a real-time RF-vision sensor fusion system, Capricorn, that efficiently builds a cross-modal correspondence between visual pixels and RF time series to better understand the complex natures of a scene. The vision sensors in Capricorn model the surrounding environment in 3D and obtain the distances of different objects. In the RF domain, the distance is proportional to the signal time-of-flight (ToF), and we can leverage the ToF to separate the RF time series corresponding to each object. The RF-vision sensor fusion in Capricorn brings multiple benefits. The vision sensors provide environmental contexts to guide the processing of RF data, which helps us select the most appropriate algorithms and models. Meanwhile, the RF sensor yields additional information that is originally invisible to vision sensors, providing insight into objects' intrinsic states. Our extensive evaluations show that Capricorn real-timely monitors multiple appliances' operating status with an accuracy of 97%+ and recovers vital signals like respirations from multiple people. A video (https://youtu.be/b-5nav3Fi78) demonstrates the capability of Capricorn.more » « less
-
null (Ed.)Understanding spatial relations (e.g., laptop on table) in visual input is important for both humans and robots. Existing datasets are insufficient as they lack large-scale, high-quality 3D ground truth information, which is critical for learning spatial relations. In this paper, we fill this gap by constructing Rel3D: the first large-scale, human-annotated dataset for grounding spatial relations in 3D. Rel3D enables quantifying the effectiveness of 3D information in predicting spatial relations on large-scale human data. Moreover, we propose minimally contrastive data collection---a novel crowdsourcing method for reducing dataset bias. The 3D scenes in our dataset come in minimally contrastive pairs: two scenes in a pair are almost identical, but a spatial relation holds in one and fails in the other. We empirically validate that minimally contrastive examples can diagnose issues with current relation detection models as well as lead to sample-efficient training. Code and data are available at https://github.com/princeton-vl/Rel3D.more » « less
-
3D models of objects and scenes are critical to many academic disciplines and industrial applications. Of particular interest is the emerging opportunity for 3D graphics to serve artificial intelligence: computer vision systems can benefit from synthetically-generated training data rendered from virtual 3D scenes, and robots can be trained to navigate in and interact with real-world environments by first acquiring skills in simulated ones. One of the most promising ways to achieve this is by learning and applying generative models of 3D content: computer programs that can synthesize new 3D shapes and scenes. To allow users to edit and manipulate the synthesized 3D content to achieve their goals, the generative model should also be structure-aware: it should express 3D shapes and scenes using abstractions that allow manipulation of their high-level structure. This state-of-the- art report surveys historical work and recent progress on learning structure-aware generative models of 3D shapes and scenes. We present fundamental representations of 3D shape and scene geometry and structures, describe prominent methodologies including probabilistic models, deep generative models, program synthesis, and neural networks for structured data, and cover many recent methods for structure-aware synthesis of 3D shapes and indoor scenes.more » « less
-
Manipulation of deformable objects is a desired skill in making robots ubiquitous in manufacturing, service, healthcare, and security. Common deformable objects (e.g., wires, clothes, bed sheets, etc.) are significantly more difficult to model than rigid objects. In this research, we contribute to the model-based manipulation of linear flexible objects such as cables. We propose a 3D geometric model of the linear flexible object that is subject to gravity and a physical model with multiple links connected by revolute joints and identified model parameters. These models enable task automation in manipulating linear flexible objects both in simulation and real world. To bridge the gap between simulation and real world and build a close-to-reality simulation of flexible objects, we propose a new strategy called Simulation-to-Real-to-Simulation (Sim2Real2Sim). We demonstrate the feasibility of our approach by completing the Plug Task used in the 2015 DARPA Robotics Challenge Finals both in simulation and real world, which involves unplugging a power cable from one socket and plugging it into another. Numerical experiments are implemented to validate our approach.more » « less
An official website of the United States government

