Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Near-surface tropospheric ozone depletion events (ODEs) occur in the polar regions during springtime when ozone reacts with bromine radicals, driving tropospheric ozone mole ratios below 15 ppb (part-per-billion; nmol mol−1). ODEs alter atmospheric oxidative capacity by influencing halogen radical recycling mechanisms and the photochemical production of hydroxyl radicals (˙OH). Herein, we examined five years of continuous ozone measurements at two coastal Arctic sites: Utqiaġvik, Alaska and ∼260 km southeast at Oliktok Point, within the North Slope of Alaska oil fields. These data informed seasonal ozone trends, springtime ozone depletion, and the influence of oil field combustion emissions. Ozone depletion occurred frequently during spring: 35% of the time at Utqiaġvik and 40% at Oliktok Point. ODEs often occurred concurrently at both sites (40–92% of observed ODEs per year), supporting spatially widespread ozone depletion. Observed ozone depletion timescales are consistent with transport of ozone-depleted air masses, suggesting regional active bromine chemistry. Local-scale ozone depletion affecting individual sites occurred less frequently. Ozone depletion typically coincided with calm winds and had no clear dependence on temperature. Consistently lower ozone mole ratios year-round at Oliktok Point, compared to Utqiaġvik, indicate local-scale ozone titration within the stable boundary layer by nitric oxide (NO˙) combustion emissions in the Arctic oil fields. Oxidation of combustion-derived volatile organic compounds in the presence of NOx also likely contributes to ozone formation downwind, for example at Utqiaġvik, pointing to complex local and regional impacts of combustion emissions as Arctic anthropogenic activity increases.more » « less
-
Volatile organic compound (VOC) emissions and subsequent oxidation contribute to the formation of secondary pollutants and poor air quality in general. As more VOCs at lower mixing ratios have become the target of air quality investigations, their quantification has been aided by technological advancements in proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS). However, such quantification requires appropriate instrument background measurements and calibrations, particularly for VOCs without calibration standards. This study utilized a Vocus PTR-TOF-MS coupled with a gas chromatograph for real-time and speciated measurements of ambient VOCs in Boulder, Colorado, during spring 2021. The aim of these measurements was to understand and characterize instrument response and temporal variability as to inform the quantification of a broader range of detected VOCs. Fast, frequent calibrations were made every 2 h in addition to daily multipoint calibrations. Sensitivities derived from the fast calibrations were 5 ± 6 % (average and 1 standard deviation) lower than those derived from the multipoint calibrations due to an offset between the calibrations and instrument background measurement. This offset was caused, in part, by incomplete mixing of the standard with diluent. These fast calibrations were used in place of a normalization correction to account for variability in instrument response and accounted for non-constant reactor conditions caused by a gradual obstruction of the sample inlet. One symptom of these non-constant conditions was a trend in fragmentation, although the greatest observed variability was 6 % (1 relative standard deviation) for isoprene. A PTR Data Toolkit (PTR-DT) was developed to assess instrument performance and rapidly estimate the sensitivities of VOCs which could not be directly calibrated on the timescale of the fast calibrations using the measured sensitivities of standards, molecular properties, and simple reaction kinetics. Through this toolkit, the standards' sensitivities were recreated within 1 ± 8 % of the measured values. Three clean-air sources were compared: a hydrocarbon trap, zero-grade air and ultra-high purity nitrogen, and a catalytic zero-air generator. The catalytic zero-air generator yielded the lowest instrument background signals for the majority of ions, followed by the hydrocarbon trap. Depending on the ionization efficiency, product ion fragmentation, ion transmission, and instrument background, standards' limits of detection (5 s measurement integration) derived from the catalytic zero-air generator and the fast calibration sensitivities ranged from 2 ppbv (methanol) to 1 pptv (decamethylcyclopentasiloxane; D5 siloxane) with most standards having detection limits below 20 pptv. Finally, applications of measurements with low detection limits are considered for a few low-signal species including sub-parts-per-trillion by volume (pptv) enhancements of icosanal (and isomers; 1 min average) in a plume of cooking emissions, and sub-parts-per-trillion by volume enhancements in dimethyl disulfide in plumes containing other organosulfur compounds. Additionally, chromatograms of hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane (D3, D4, and D5 siloxanes, respectively), combined with high sensitivity, suggest that online measurements can reasonably be associated with the individual isomers.more » « less
An official website of the United States government
