Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available July 15, 2025
-
Free, publicly-accessible full text available June 23, 2025
-
To broaden efforts for improving diversity, equity, and inclusion (DEI) in biomedical engineering (BME) education—a key area of emphasis is the integration of inclusive teaching practices. While BME faculty generally support these efforts, translating support into action remains challenging. This project aimed to address this need through a 3-phase inclusive teaching training, consisting of graduate students, faculty, and engineering education consultants. In Phase I, graduate students and faculty participated in a 6-week learning community on inclusive teaching (Foundational Learning). In Phase II, graduate students were paired with faculty to modify or develop new inclusive teaching materials to be integrated into a BME course (Experiential Learning). Phase III was the implementation of these materials. To assess Phases I & II, graduate student participants reflected on their experiences on the project. To assess Phase III, surveys were administered to students in IT-BME-affiliated courses as well as those taking other BME-related courses. Phases I & II: graduate students responded positively to the opportunity to engage in this inclusive teaching experiential learning opportunity. Phase III: survey results indicated that the incorporation of inclusive teaching practices in BME courses enhanced the student learning experience. The IT-BME project supported graduate students and faculty in learning about, creating, and implementing inclusive teaching practices in a collaborative and supportive environment. This project will serve to both train the next class of instructors and use their study of inclusive teaching concepts to facilitate the creation of ideas and materials that will benefit the BME curriculum and students.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Ask your students what they think of when they hear the word robotics. Most students likely imagine a large, clunky machine used in a manufacturing plant or construction site. Other students may mention modern humanoid robots that appear in popular culture like C3PO from the Star Wars franchise. No matter the response, there is a good chance that nearly all students will mention a robot made of hard materials like metal. This article describes the introduction of a new field, soft robotics, into high school classrooms to broaden students’ perceptions of how robots can be used and who works on robotics. Soft robots are made from compliant materials, such as rubber or textiles, and have a wide variety of applications in the medical field, space exploration, and food distribution. This field provides an excellent opportunity to expand students’ view of robotics while learning how to think and design like an engineer.more » « less
-
Recent international calls have been made to build capacity in engineering by increasing the number of scholars using research-based instructional practices in engineering classrooms. Training traditional engineering professors to conduct engineering education research (EER) supports this goal. Previous work suggests that engineering professors interested in performing social sciences or educational research require structured support when making this transition. We interviewed 18 professors engaged with a grant opportunity in the United States that supports professors conducting EER for the first time through structured mentorship. Thematic analysis of interview data resulted in four findings describing common perceptions and experiences of traditional engineering professors as they begin to conduct formalised EER: motivation to conduct EER, institutional support and barriers, growth in knowledge, and integrating with EER culture. Within these findings, barriers to entering EER were uncovered with implications for professors interested in EER, funding agencies, and prospective mentors, resulting in suggestions for improving access to EER for professors developing as teaching scholars.more » « less
-
This is the first of a series of studies that explore the relationship between disciplinary background and the weighting of various elements of a manuscript in peer reviewers’ determination of publication recommendations. Research questions include: (1) To what extent are tacit criteria for determining quality or value of EER manuscripts influenced by reviewers’ varied disciplinary backgrounds and levels of expertise? and (2) To what extent does mentored peer review professional development influence reviewers’ EER manuscript evaluations? Data were collected from 27 mentors and mentees in a peer review professional development program. Participants reviewed the same two manuscripts, using a form to identify strengths, weaknesses, and recommendations. Responses were coded by two researchers (70% IRR). Our findings suggest that disciplinary background influences reviewers’ evaluation of EER manuscripts. We also found evidence that professional development can improve reviewers’ understanding of EER disciplinary conventions. Deeper understanding of the epistemological basis for manuscript reviews may reveal ways to strengthen professional preparation in engineering education as well as other disciplines.more » « less
-
This paper describes the Engineering Education Research (EER) Peer Review Training (PERT) project, which is designed to develop EER scholars’ peer review skills through mentored reviewing experiences. Supported by the National Science Foundation, the overall programmatic goals of the PERT project are to establish and evaluate a mentored reviewer program for 1) EER journal manuscripts and 2) EER grant proposals. Concurrently, the project seeks to explore how EER scholars develop schema for evaluating EER scholarship, whether these schema are shared in the community, and how schema influence recommendations made to journal editors during the peer review process. To accomplish these goals, the PERT project leveraged the previously established Journal of Engineering Education (JEE) Mentored Reviewer Program, where two researchers with little reviewing experience are paired with an experienced mentor to complete three manuscript reviews collaboratively. In this paper we report on focus group and exit survey findings from the JEE Mentored Reviewer Program and discuss revisions to the program in response to those findings.more » « less