skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Jerjen, Helmut"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We report the discovery of 40 new satellite dwarf galaxy candidates in the sphere of influence of the Sombrero Galaxy (M104), the most luminous galaxy in the Local Volume. Using the Subaru Hyper Suprime-Cam, we surveyed 14.4 deg2 of its surroundings, extending to the virial radius. Visual inspection of the deep images and galfit modelling yielded a galaxy sample highly complete down to Mg ∼ −9 ($L_{g}\sim 3\times 10^{5}\ \mathrm{ L}_\odot$) and spanning magnitudes −16.4 < Mg < −8 and half-light radii 50 pc < re < 1600 pc assuming the distance of M104. These 40 new candidates, out of which 27 are group members with high confidence, double the number of potential satellites of M104 within the virial radius, placing it among the richest hosts in the Local Volume. Using a principal component analysis, we find that the entire sample of candidates is consistent with an almost circular on-sky distribution, more circular than any comparable environment found in the Illustris TNG100-1 (The Next Generation) simulation. However, the distribution of the high-probability sample is more oblate and consistent with the simulation. The cumulative satellite luminosity function is broadly consistent with analogues from the simulation, albeit it contains no bright satellite with Mg < −16.4 ($L_{g}\sim 3 \times 10^{8}\ \mathrm{ L}_\odot$), a $2.3\, \sigma$ occurrence. Follow-up spectroscopy to confirm group membership will begin to demonstrate how these systems can act as probes of the structure and formation history of the halo of M104.

    more » « less
    Free, publicly-accessible full text available November 27, 2024
  2. null (Ed.)