Scheduling pipe replacement is critical for water distribution systems (WDSs) when managing finances and water loss. WDS replacements are often delayed due to high immediate costs without considering long‐term environmental consequences. This study is the first to examine a real‐world WDS using a novel workflow transferrable to other WDSs that integrates GIS, hydraulic modeling, breakage prediction, and life cycle analysis to evaluate environmental impacts and water loss of five replacement schedules (25‐, 50‐, 75‐, 100‐, 150‐year intervals). Environmental impacts were reduced by half when replacement interval changed from 25 year to 150 years, yet volume of water leaked from the system quadrupled. Benefits plateaued beyond 50–75‐year replacement while water loss steadily increased. Lowering water loss through break management enabled one‐sixth pipe replacement without exceeding original leakage at 25‐year replacement. Results were robust to uncertainty parameters and assert the importance of equilibrating environmental impacts and water loss when designing pipe replacement frequency.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Population and development megatrends will drive growth in cement production, which is already one of the most challenging-to-mitigate sources of CO2emissions. However, availabilities of conventional secondary cementitious materials (CMs) like fly ash are declining. Here, we present detailed generation rates of secondary CMs worldwide between 2002 and 2018, showing the potential for 3.5 Gt to be generated in 2018. Maximal substitution of Portland cement clinker with these materials could have avoided up to 1.3 Gt CO2-eq. emissions (~44% of cement production and ~2.8% of anthropogenic CO2-eq. emissions) in 2018. We also show that nearly all of the highest cement producing nations can locally generate and use secondary CMs to substitute up to 50% domestic Portland cement clinker, with many countries able to potentially substitute 100% Portland cement clinker. Our results highlight the importance of pursuing regionally optimized CM mix designs and systemic approaches to decarbonizing the global CMs cycle.