Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Cover crops, a promising strategy to increase soil organic carbon (SOC) storage in croplands and mitigate climate change, have typically been shown to benefit soil carbon (C) storage from increased plant C inputs. However, input‐driven C benefits may be augmented by the reduction of C outputs induced by cover crops, a process that has been tested by individual studies but has not yet been synthesized. Here we quantified the impact of cover crops on organic C loss via soil erosion (SOC erosion) and revealed the geographical variability at the global scale. We analyzed the field data from 152 paired control and cover crop treatments from 57 published studies worldwide using meta‐analysis and machine learning. The meta‐analysis results showed that cover crops widely reduced SOC erosion by an average of 68% on an annual basis, while they increased SOC stock by 14% (0–15 cm). The absolute SOC erosion reduction ranged from 0 to 18.0 Mg C−1 ha−1 year−1and showed no correlation with the SOC stock change that varied from −8.07 to 22.6 Mg C−1 ha−1 year−1at 0–15 cm depth, indicating the latter more likely related to plant C inputs. The magnitude of SOC erosion reduction was dominantly determined by topographic slope. The global map generated by machine learning showed the relative effectiveness of SOC erosion reduction mainly occurred in temperate regions, including central Europe, central‐east China, and Southern South America. Our results highlight that cover crop‐induced erosion reduction can augment SOC stock to provide additive C benefits, especially in sloping and temperate croplands, for mitigating climate change.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available June 25, 2026
-
Abstract Land use change (LUC) alters the global carbon (C) stock, but our estimation of the alteration remains uncertain and is a major impediment to predicting the global C cycle. The uncertainty is partly due to the limited number and geographical bias of observations, and limited exploration of its predictors. Here we generated a comprehensive global database of 5,980 observations from 790 articles. The number of sites evaluated is at least seven times larger than in previous meta‐analyses. Our constrained estimates of different LUC's effects on soil organic C (SOC) and their variations across global climates reveal underestimation/overestimation in previous estimates. Converting forests and grasslands to croplands reduced SOC by 24.5% ± 1.53% (−11.03 ± 1.06 Mg ha−1) and 22.7% ± 1.22% (−8.09 ± 0.67 Mg ha−1), while 28.0% ± 1.56% (4.46 ± 0.42 Mg ha−1) and 33.5% ± 1.68% (5.8 ± 0.38 Mg ha−1) increases, respectively, were obtained in the reverse processes. Converting forests to grasslands decreased SOC by 2.1% ± 1.22% (−1.13 ± 0.44 Mg ha−1), while the reverse process increased SOC by 18.6% ± 1.73% (3.31 ± 0.51 Mg ha−1). Modeled relative importance of 10 drivers of LUC's impact on SOC revealed that higher initial SOC (iSOC) does not solely determine SOC loss in SOC‐negative LUC scenarios as previously proposed. Across four decades, reconverting croplands to forests and grasslands recovered only 49.5% (6.1 ± 0.51 Mg ha−1) and 75.3% (7.0 ± 0.38 Mg ha−1) of the iSOC, respectively, indicating the need for protecting C‐rich ecosystems. Our global data set advances information on LUC's effect on SOC and can be valuable to constrain Earth system models to reliably estimate global SOC stocks and plan climate change mitigation strategies.more » « less
-
Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first‐order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high‐quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics‐function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions.more » « less
-
Key Points More than 70 microbial models have recently been developed to simulate soil carbon dynamics Diversity in model structures and parameters indicates uncertainty in translating current knowledge of microbial processes into models Data‐driven model development and parameterization are highly recommended to improve the prediction of microbial modelsmore » « less
-
Abstract Large across‐model spread in simulating land carbon (C) dynamics has been ubiquitously demonstrated in model intercomparison projects (MIPs), and became a major impediment in advancing climate change prediction. Thus, it is imperative to identify underlying sources of the spread. Here, we used a novel matrix approach to analytically pin down the sources of across‐model spread in transient peatland C dynamics in response to a factorial combination of two atmospheric CO 2 levels and five temperature levels. We developed a matrix‐based MIP by converting the C cycle module of eight land models (i.e., TEM, CENTURY4, DALEC2, TECO, FBDC, CASA, CLM4.5 and ORCHIDEE) into eight matrix models. While the model average of ecosystem C storage was comparable to the measurement, the simulation differed largely among models, mainly due to inter‐model difference in baseline C residence time. Models generally overestimated net ecosystem production (NEP), with a large spread that was mainly attributed to inter‐model difference in environmental scalar. Based on the sources of spreads identified, we sequentially standardized model parameters to shrink simulated ecosystem C storage and NEP to almost none. Models generally captured the observed negative response of NEP to warming, but differed largely in the magnitude of response, due to differences in baseline C residence time and temperature sensitivity of decomposition. While there was a lack of response of NEP to elevated CO 2 (eCO 2 ) concentrations in the measurements, simulated NEP responded positively to eCO 2 concentrations in most models, due to the positive responses of simulated net primary production. Our study used one case study in Minnesota peatland to demonstrate that the sources of across‐model spreads in simulating transient C dynamics can be precisely traced to model structures and parameters, regardless of their complexity, given the protocol that all the matrix models were driven by the same gross primary production and environmental variables.more » « less
-
Abstract BackgroundCountries have long been making efforts by reducing greenhouse-gas emissions to mitigate climate change. In the agreements of the United Nations Framework Convention on Climate Change, involved countries have committed to reduction targets. However, carbon (C) sink and its involving processes by natural ecosystems remain difficult to quantify. MethodsUsing a transient traceability framework, we estimated country-level land C sink and its causing components by 2050 simulated by 12 Earth System Models involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under RCP8.5. ResultsThe top 20 countries with highest C sink have the potential to sequester 62 Pg C in total, among which, Russia, Canada, USA, China, and Brazil sequester the most. This C sink consists of four components: production-driven change, turnover-driven change, change in instantaneous C storage potential, and interaction between production-driven change and turnover-driven change. The four components account for 49.5%, 28.1%, 14.5%, and 7.9% of the land C sink, respectively. ConclusionThe model-based estimates highlight that land C sink potentially offsets a substantial proportion of greenhouse-gas emissions, especially for countries where net primary production (NPP) likely increases substantially and inherent residence time elongates.more » « less
An official website of the United States government
