There is an increasing desire to utilize complex functional electronic materials such as ferroelectrics in next-generation microelectronics. As new materials are considered or introduced in this capacity, an understanding of how we can process these materials into those devices must be developed. Here, the effect of different fabrication processes on the ferroelectric and related properties of prototypical metal oxide (SrRuO3)/ferroelectric (BaTiO3)/metal oxide (SrRuO3) heterostructures is explored. Two different types of etching processes are studied, namely, wet etching of the top SrRuO3 using a NaIO4 solution and dry etching using an Ar+-ion beam (i.e., ion milling). Polarization-electric-field hysteresis loops for capacitors produced using both methods are compared. For the ion-milling process, it is found that the Ar+ beam can introduce defects into the SrRuO3/BaTiO3/SrRuO3 devices and that the milling depth strongly influences the defect level and can induce a voltage imprint on the function. Realizing that such processing approaches may be necessary, work is performed to ameliorate the imprint of the hysteresis loops via ex situ “healing” of the process-induced defects by annealing the ferroelectric material in a barium-and-oxygen-rich environment via a chemical-vapor-deposition-style process. This work provides a pathway for the nanoscale fabrication of these candidate materials for next-generation memory and logic applications.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2025
-
Abstract Protein translation is tightly and precisely controlled by multiple mechanisms including upstream open reading frames (uORFs), but the origins of uORFs and their role in maize are largely unexplored. In this study, an active transposition event was identified during the propagation of maize inbred line B73. The transposon, which was named BTA for ‘B73 active transposable element hAT’, creates a novel dosage-dependent hypomorphic allele of the hexose transporter gene ZmSWEET4c through insertion within the coding sequence in the first exon, and results in reduced kernel size. The BTA insertion does not affect transcript abundance but reduces protein abundance of ZmSWEET4c, probably through the introduction of a uORF. Furthermore, the introduction of BTA sequence in the exon of other genes can regulate translation efficiency without affecting their mRNA levels. A transposon capture assay revealed 79 novel insertions for BTA and BTA-like elements. These insertion sites have typical euchromatin features, including low levels of DNA methylation and high levels of H3K27ac. A putative autonomous element that mobilizes BTA and BTA-like elements was identified. Together, our results suggest a transposon-based origin of uORFs and document a new role for transposable elements to influence protein abundance and phenotypic diversity by affecting the translation rate.
-
Abstract Complex‐oxide superlattices provide a pathway to numerous emergent phenomena because of the juxtaposition of disparate properties and the strong interfacial interactions in these unit‐cell‐precise structures. This is particularly true in superlattices of ferroelectric and dielectric materials, wherein new forms of ferroelectricity, exotic dipolar textures, and distinctive domain structures can be produced. Here, relaxor‐like behavior, typically associated with the chemical inhomogeneity and complexity of solid solutions, is observed in (BaTiO3)
n /(SrTiO3)n (n = 4–20 unit cells) superlattices. Dielectric studies and subsequent Vogel–Fulcher analysis show significant frequency dispersion of the dielectric maximum across a range of periodicities, with enhanced dielectric constant and more robust relaxor behavior for smaller periodn . Bond‐valence molecular‐dynamics simulations predict the relaxor‐like behavior observed experimentally, and interpretations of the polar patterns via 2D discrete‐wavelet transforms in shorter‐period superlattices suggest that the relaxor behavior arises from shape variations of the dipolar configurations, in contrast to frozen antipolar stripe domains in longer‐period superlattices (n = 16). Moreover, the size and shape of the dipolar configurations are tuned by superlattice periodicity, thus providing a definitive design strategy to use superlattice layering to create relaxor‐like behavior which may expand the ability to control desired properties in these complex systems. -
Abstract Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial‐thin‐film‐based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro‐, meso‐, and macroscopic length scales. This review traces the evolution of ferroelectric thin‐film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high‐throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand‐in‐hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices.
-
Abstract The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−
x Srx HfO3system. The resulting (240)‐oriented PbHfO3(Pba 2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP 4mm phase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−x Srx HfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (E B) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (U r) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofE B = 5.12 ± 0.5 MV cm−1,U r = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides. -
Abstract Strain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high‐quality substrates. Here, using the ferroelectric BaTiO3, production of precisely strain‐engineered, substrate‐released nanoscale membranes is demonstrated via an epitaxial lift‐off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide‐metal/ferroelectric/oxide‐metal structures fabricated from the released membranes. In devices integrated on silicon, the interlayer stress provides deterministic control of ordering temperature (from 75 to 425 °C) and releasing the substrate clamping is shown to dramatically impact ferroelectric switching and domain dynamics (including reducing coercive fields to <10 kV cm−1and improving switching times to <5 ns for a 20 µm diameter capacitor in a 100‐nm‐thick film). In devices integrated on flexible polymers, enhanced room‐temperature dielectric permittivity with large mechanical tunability (a 90% change upon ±0.1% strain application) is demonstrated. This approach paves the way toward the fabrication of ultrafast CMOS‐compatible ferroelectric memories and ultrasensitive flexible nanosensor devices, and it may also be leveraged for the stabilization of novel phases and functionalities not achievable via direct epitaxial growth.