skip to main content

Title: Beyond Substrates: Strain Engineering of Ferroelectric Membranes

Strain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high‐quality substrates. Here, using the ferroelectric BaTiO3, production of precisely strain‐engineered, substrate‐released nanoscale membranes is demonstrated via an epitaxial lift‐off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide‐metal/ferroelectric/oxide‐metal structures fabricated from the released membranes. In devices integrated on silicon, the interlayer stress provides deterministic control of ordering temperature (from 75 to 425 °C) and releasing the substrate clamping is shown to dramatically impact ferroelectric switching and domain dynamics (including reducing coercive fields to <10 kV cm−1and improving switching times to <5 ns for a 20 µm diameter capacitor in a 100‐nm‐thick film). In devices integrated on flexible polymers, enhanced room‐temperature dielectric permittivity with large mechanical tunability (a 90% change upon ±0.1% strain application) is demonstrated. This approach paves the way toward the fabrication of ultrafast CMOS‐compatible ferroelectric memories and ultrasensitive flexible nanosensor devices, and it may also be leveraged for the stabilization of novel phases and functionalities not achievable via direct epitaxial growth.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al2O3substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetism and magnetostriction) and strain gradients (flexomagnetism).

    more » « less
  2. Bi2NiMnO6(BNMO) epitaxial thin films with a layered supercell (LSC) structure have emerged as a promising single‐phase multiferroic material recently. Because of the required strain state for the formation of the LSC structures, most of the previous BNMO films are demonstrated on rigid oxide substrates such as SrTiO3and LaAlO3. Here, the potential of BNMO films grown on muscovite mica substrates via van der Waals epitaxy, spotlighting their suitability for cutting‐edge flexible device applications is delved. Comprehensive scanning transmission electron microscopy/energy‐dispersive X‐ray analyses reveal a layered structure in the BNMO film and a pristine interface with the mica substrate, indicating high‐quality deposition and minimal interfacial defects. Capitalizing on its unique property of easily cleavable layers due to weak van der Waals forces in mica substrates, flexible BNMO/mica samples are fixed. A standout feature of the BNMO film grown on mica substrate is its consistent multiferroic properties across varied mechanical conditions. A novel technique is introduced for thinning the mica substrate and subsequent transfer of the sample, with post‐transfer analyses validating the preserved structural and magnetic attributes of the film. Overall, this study illuminates the resilient multiferroic properties of BNMO films on mica, offering promising avenues for their integration for next‐generation flexible electronics.

    more » « less
  3. Abstract

    Electric‐field‐controlled magnetism is of importance in realizing energy efficient, dense and fast information storage and processing. Strain‐mediated converse magneto‐electric (ME) coupling between ferromagnetic and ferroelectric heterostructure shows promise for realizing electric‐controlled magnetism at room temperature and is attracting a number of recent investigations. However, such ME‐effect studies have mainly focus on magnetic metals. In this work, high quality yttrium iron garnet (Y3Fe5O12(YIG)) films are deposited directly onto (100)‐oriented single‐crystal Pb (Mg1/3Nb2/3)0.7Ti0.3O3(PMN‐PT) substrates by means of magnetron sputtering. The electric‐field‐induced polarization switching and lattice strain in the PMN‐PT substrate results in two distinct magnetization states in the YIG film that are nonvolatile and electrically reversible. Because of the direct contact between the YIG and the PMN‐PT substrate, an efficient ME coupling and an almost 90° rotation of the easy axis of the YIG film can be realized. Furthermore, the electric‐field‐controlled hysteresis loop‐like ferromagnetic resonance field shifts and spin pumping signals are observed in Pt/YIG/PMN‐PT heterostructures. Thus, the obstacle is overcome via growing high‐quality YIG thin films directly onto PMN‐PT substrates and an efficient manipulation of magnetism and pure spin current transport by electric field is thereby realized. These findings are instructive for future low‐power magnetic insulator‐based spintronic devices.

    more » « less
  4. Abstract

    The transfer‐free direct growth of high‐performance materials and devices can enable transformative new technologies. Here, room‐temperature field‐effect hole mobilities as high as 707 cm2V−1s−1are reported, achieved using transfer‐free, low‐temperature (≤120 °C) direct growth of helical tellurium (Te) nanostructure devices on SiO2/Si. The Te nanostructures exhibit significantly higher device performance than other low‐temperature grown semiconductors, and it is demonstrated that through careful control of the growth process, high‐performance Te can be grown on other technologically relevant substrates including flexible plastics like polyethylene terephthalate and graphene in addition to amorphous oxides like SiO2/Si and HfO2. The morphology of the Te films can be tailored by the growth temperature, and different carrier scattering mechanisms are identified for films with different morphologies. The transfer‐free direct growth of high‐mobility Te devices can enable major technological breakthroughs, as the low‐temperature growth and fabrication is compatible with the severe thermal budget constraints of emerging applications. For example, vertical integration of novel devices atop a silicon complementary metal oxide semiconductor platform (thermal budget <450 °C) has been theoretically shown to provide a 10× systems level performance improvement, while flexible and wearable electronics (thermal budget <200 °C) can revolutionize defense and medical applications.

    more » « less
  5. Wide bandgap II-VI semiconductors, lattice-matched to InP substrates, show promise for use in novel, visible wavelength photonic devices; however, release layers for substrate removal are still under development. An under-etch method is reported which uses an InP substrate as an effective release layer for the epitaxial lift-off of lattice-matched ZnCdMgSe membranes. An array of 100-µm-square membranes is defined on a ZnCdMgSe surface using dry etching and suspended from the InP substrate using a three-step wet etch. The ZnCdMgSe membranes are transfer-printed onto a diamond heatspreader and have an RMS surface roughness < 2 nm over 400 µm2, similar to the epitaxial surface. Membranes on diamond show a photoluminescence peak at ∼520 nm and a thermal redshift of 4 nm with ∼3.6 MWm−2continuous optical pumping at 447 nm. Effective strain management during the process is demonstrated by the absence of cracks or visible membrane bowing and the high brightness photoluminescence indicates a minimal non-radiative defect introduction. The methodology presented will enable the heterogeneous integration and miniaturization of II-VI membrane devices.

    more » « less