skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jiang, Yushan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Radio frequency (RF) signal classification has significantly been used for detecting and identifying the features of unknown unmanned aerial vehicles (UAVs). This paper proposes a method using empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) on extracting the communication channel characteristics of intruding UAVs. The decomposed intrinsic mode functions (IMFs) except noise components are selected for RF signal pattern recognition based on machine learning (ML). The classification results show that the denoising effects introduced by EMD and EEMD could both fit in improving the detection accuracy with different features of RF communication channel, especially on identifying time-varying RF signal sources. 
    more » « less
  2. null (Ed.)
    There is an increasing need to fly unmanned aerial vehicles (UAVs) to enable a wide variety of beneficial applications such as emergency/disaster response, observation and study of weather phenomena including severe storms. However, UAVs are subject to cybersecurity threats stemming from increasing reliance on computer and communication technologies. There is a need to foster a robust workforce with integrated UAV and cybersecurity competencies. In addition to technique challenges, current UAV cybersecurity education also faces two significant non-technical challenges: first, there are federal or state rules and regulations on UAV flights; second, the number of designated UAV test sites is limited. A three years NSF SaTC funded project in 2020 will specifically address these challenges. We propose to develop a laboratory platform for UAV cybersecurity education. To be specific, our platform integrates software simulation with hardware-in-the-loop (HIL) simulation to simulate different UAV scenarios, on the top of which cybersecurity components are developed for hands-on practicing. We use a firmware for UAV system development, Pixhawk with related open-source software packages, as the basic simulation framework. On the top of the simulation environment, a series of hands-on exercise modules will be developed to cover UAV cybersecurity issues. Motivated by different types of cybersecurity threats to UAVs, we will adopt the scenario based design and set up several categories of exercise modules including common threats in UAV and additional modules for newly identified threats with corresponding actors, goals, actions, and events. In such a manner offense and defense tasks can be further developed. The proposed platform has the potential to be adopted by universities with limited resources to UAV cybersecurity. It will help educate future workforce with integrated UAV and cybersecurity competencies, towards secure and trustworthy cyberspace around UAVs. 
    more » « less