Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Field-deployable real-time aerosol mass spectrometers (AMSs) typically use an aerodynamic lens as an inlet that collimates aerosols into a narrow beam over a wide range of particle sizes. Such lenses need constant upstream pressure to work consistently. Deployments in environments where the ambient pressure changes, e.g., on aircraft, typically use pressure-controlled inlets (PCIs). These have performed less well for supermicron aerosols, such as the larger particles in stratospheric air and some urban hazes. In this study, we developed and characterized a new PCI design (“CU PCI-D”) coupled with a recently developed PM2.5 aerodynamic lens, with the goal of sampling the full accumulation mode of ambient aerosols with minimal losses up to upper troposphere and lower stratosphere (UTLS) altitudes. A new computer-controlled lens alignment system and a new 2D particle beam imaging device that improves upon the Aerodyne aerosol beam width probe (BWP) have been developed and tested. These techniques allow for fast automated aerosol beam width and position measurements and ensure the aerodynamic lens is properly aligned and characterized for accurate quantification, in particular for small sizes that are hard to access with monodisperse measurements. The automated lens alignment tool also allows position-dependent thermal decomposition to be investigated on the vaporizer surface. The CU PCI-D was tested on the TI3GER campaign aboard the NCAR/NSF G-V aircraft. Based on comparisons with the co-sampling UHSAS particle sizer, the CU aircraft AMS with the modified PCI consistently measured ∼ 89 % of the accumulation-mode particle mass in the UTLS.more » « less
-
Abstract Aqueous‐phase uptake and processing of water‐soluble organic compounds can promote secondary organic aerosol (SOA) production. We evaluated the contributions of aqueous‐phase chemistry to summertime urban SOA at two sites in New York City. The relative role of aqueous‐phase processing varied with chemical and environmental conditions, with evident daytime SOA enhancements (e.g., >1 μg/m3) during periods with relative humidities (RH) exceeding 65% and often higher temperatures. Oxygenated organic aerosol (OOA) production was also sensitive to secondary inorganic aerosols, in part through their influence on aerosol liquid water. On average, high‐RH periods exhibited a 69% increase in less‐oxidized OOA production in Queens, NY. These enhancements coincided with southerly backward trajectories and greater inorganic aerosol concentrations, yet showed substantial intra‐city variability between Queens and Manhattan. The observed aqueous‐phase SOA production, even with historically low sulfate and nitrate aerosol loadings, highlights both opportunities and challenges for continued reductions in summertime PM2.5in urban communities.more » « lessFree, publicly-accessible full text available February 28, 2026
-
Abstract. Previous studies have demonstrated volatility-dependent absorption of gas-phase volatile organic compounds (VOCs) to Teflon and other polymers. Polymer–VOC interactions are relevant for atmospheric chemistry sampling, as gas–wall partitioning in polymer tubing can cause delays and biases during measurements. They are also relevant to the study of indoor chemistry, where polymer-based materials are abundant (e.g., carpets and paints). In this work, we quantify the absorptive capacities of multiple tubing materials, including four nonconductive polymers (important for gas sampling and indoor air quality), four electrically conductive polymers and two commercial steel coatings (for gas and particle sampling). We compare their performance to previously characterized materials. To quantify the absorptive capacities, we expose the tubing to a series of ketones in the volatility range 104–109 µg m−3 and monitor transmission. For slow-diffusion polymers (e.g., perfluoroalkoxy alkane (PFA) Teflon and nylon), absorption is limited to a thin surface layer, and a single-layer absorption model can fit the data well. For fast-diffusion polymers (e.g., polyethylene and conductive silicone), a larger depth of the polymer is available for diffusion, and a multilayer absorption model is needed. The multilayer model allows fitting solid-phase diffusion coefficients for different materials, which range from 4×10-9 to 4×10-7 cm2 s−1. These diffusion coefficients are ∼ 8 orders of magnitude larger than literature values for fluorinated ethylene propylene (FEP) Teflon film. This enormous difference explains the differences in VOC absorption measured here. We fit an equivalent absorptive mass (CW, µg m−3) for each absorptive material. We found PFA to be the least absorptive, with CW ∼ 105 µg m−3, and conductive silicone to be the most absorptive, with CW ∼ 1013 µg m−3. PFA transmits VOCs easily and intermediate-volatility species (IVOCs) with quantifiable delays. In contrast, conductive silicone tubing transmits only the most volatile VOCs, denuding all lower-volatility species. Semi-volatile species (SVOCs) are very difficult to sample quantitatively through any tubing material. We demonstrate a system combining several slow- and fast-diffusion tubing materials that can be used to separate a mixture of VOCs into volatility classes. New conductive silicone tubing contaminated the gas stream with siloxanes, but this effect was reduced 10 000-fold for aged tubing, while maintaining the same absorptive properties. SilcoNert (tested in this work) and Silonite (tested in previous work) steel coatings showed gas transmission that was almost as good as PFA, but since they undergo adsorption, their delay times may be humidity- and concentration-dependent.more » « less
-
Abstract. Secondary inorganic aerosols (sulfate, nitrate, and ammonium, SNA) are major contributors to fine particulate matter. Predicting concentrations of these species is complicated by the cascade of processes that control their abundance, including emissions, chemistry, thermodynamic partitioning, and removal. In this study, we use 11 flight campaigns to evaluate the GEOS-Chem model performance for SNA. Across all the campaigns, the model performance is best for sulfate (R2 = 0.51; normalized mean bias (NMB) = 0.11) and worst for nitrate (R2=0.22; NMB = 1.76), indicating substantive model deficiencies in the nitrate simulation. Thermodynamic partitioning reproduces the total particulate nitrate well (R2=0.79; NMB = 0.09), but actual partitioning (i.e., ε(NO3-)= NO3- / TNO3) is challenging to assess given the limited sets of full gas- and particle-phase observations needed for ISORROPIA II. In particular, ammonia observations are not often included in aircraft campaigns, and more routine measurements would help constrain sources of SNA model bias. Model performance is sensitive to changes in emissions and dry and wet deposition, with modest improvements associated with the inclusion of different chemical loss and production pathways (i.e., acid uptake on dust, N2O5 uptake, and NO3- photolysis). However, these sensitivity tests show only modest reduction in the nitrate bias, with no improvement to the model skill (i.e., R2), implying that more work is needed to improve the description of loss and production of nitrate and SNA as a whole.more » « less
-
Abstract. Obtaining quantitative information for molecular species present in aerosols from real-time mass spectrometers such as an extractive electrospray time-of-flight mass spectrometer (EESI) and an aerosol mass spectrometer (AMS) can be challenging. Typically, molecular species are calibrated directly through the use of pure standards. However, in some cases (e.g., secondary organic aerosol (SOA) formed from volatile organic compounds (VOCs)), direct calibrations are impossible, as many SOA species can either not be purchased as pure standards or have ambiguous molecular identities. In some cases, bulk OA sensitivities are used to estimate molecular sensitivities. This approach is not sufficient for EESI, which measures molecular components of OA, because different species can have sensitivities that vary by a factor of more than 30. Here, we introduce a method to obtain EESI calibration factors when standards are not available, and we provide a thorough analysis of the feasibility, performance, and limitations of this new technique. In this method, complex aerosol mixtures were separated with high-performance liquid chromatography (HPLC) followed by aerosol formation via atomization. The separated aerosols were then measured by an EESI and an AMS, which allowed us to obtain sensitivities for some species present in standard and SOA mixtures. Pure compounds were used to test the method and characterize its uncertainties, and obtained sensitivities were consistent within ±20 % when comparing direct calibrations vs. HPLC calibrations for a pure standard and within a factor of 2 for a standard mixture. In some cases, species were not completely resolved by chromatography, and positive matrix factorization (PMF) of AMS data enabled further separation. This method should be applicable to other real-time MS techniques. Improvements in chromatography are possible that would allow better separation in complex mixtures.more » « less
-
Abstract Magnetic and electronic properties of quantum materials heavily rely on the crystal structure even in the same chemical compositions. In this study, it is demonstrated that a layered tetragonal EuCd 2 Sb 2 structure can be obtained by treating bulk trigonal EuCd 2 Sb 2 under high pressure (6 GPa) and high temperature (600 °C). Magnetization measurements of the newly formed layered tetragonal EuCd 2 Sb 2 confirm an antiferromagnetic ordering with Neel temperature ( T N ) around 16 K, which is significantly higher than that ( T N ≈ 7 K) of trigonal EuCd 2 Sb 2 , consistent with heat capacity measurements. Moreover, bad metal behavior is observed in the temperature dependence of the electrical resistivity and the resistivity shows a dramatic increase around the Neel temperature. Electronic structure calculations with local density approximation dynamic mean–field theory (LDA+DMFT) show that this material is strongly correlated with well‐formed large magnetic moments, due to Hund's coupling, which is known to dramatically suppress the Kondo scale.more » « less
-
Abstract. The Aerodyne Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) are the most widely applied tools for in situ chemical analysis of the non-refractory bulk composition of fine atmospheric particles. The mass spectra (MS) of many AMS and ACSM observations from field and laboratory studies have been reported in peer-reviewed literature and many of these MS have been submitted to an open-access website. With the increased reporting of such datasets, the database interface requires revisions to meet new demands and applications. One major limitation of the web-based database is the inability to automatically search the database and compare previous MS with the researcher's own data. In this study, a searchable database tool for the AMS and ACSM mass spectral dataset was built to improve the efficiency of data analysis using Igor Pro, consistent with existing AMS and ACSM software. The database tool incorporates the published MS and sample information uploaded on the website. This tool allows the comparison of a target mass spectrum with the reference MS in the database, calculating cosine similarity, and provides a range of MS comparison plots, reweighting, and mass spectrum filtering options. The aim of this work is to help AMS and ACSM users efficiently analyze their own data for possible source or atmospheric processing features by comparison to previous studies, enhancing information gained from past and current global research on atmospheric aerosol.more » « less
An official website of the United States government
