skip to main content

Search for: All records

Creators/Authors contains: "Jin Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2024
  2. For transportation system analysis in a new space dimension with respect to individual trips’ remaining distances, vehicle trips demand has two main components: the departure time and the trip distance. In particular, the trip distance distribution (TDD) is a direct input to the bathtub model in the new space dimension, and is a very important variable to consider in many applications, such as the development of distance-based congestion pricing strategies or mileage tax. For a good understanding of the demand pattern, both the distribution of trip initiation and trip distance should be calibrated from real data. In this paper, it is assumed that the demand pattern can be described by the joint distribution of trip distance and departure time. In other words, TDD is assumed to be time-dependent, and a calibration and validation methodology of the joint probability is proposed, based on log-likelihood maximization and the Kolmogorov–Smirnov test. The calibration method is applied to empirical for-hire vehicle trips in Chicago, and it is concluded that TDD varies more within a day than across weekdays. The hypothesis that TDD follows a negative exponential, log-normal, or Gamma distribution is rejected. However, the best fit is systematically observed for the time-dependent log-normal probability density function. In the future, other trip distributions should be considered and also non-parametric probability density estimation should be explored for a better understanding of the demand pattern. 
    more » « less