Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:
Certifying that a list of
n integers has no 3-SUM solution can be done in Merlin–Arthur time . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n)$$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ time).$$\tilde{O}(n^{1.5})$$ Counting the number of
k -cliques with total edge weight equal to zero in ann -node graph can be done in Merlin–Arthur time (where$${\tilde{O}}(n^{\lceil k/2\rceil })$$ ). For odd$$k\ge 3$$ k , this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm -edge graph can be done in Merlin–Arthur time . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count$${\tilde{O}}(m)$$ k -cliques in unweighted graphs, and had worse running times for smallk .Computing the All-Pairs Shortest Distances matrix for an
n -node graph can be done in Merlin–Arthur time . Note this is optimal, as the matrix can have$$\tilde{O}(n^2)$$ nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\Omega (n^2)$$ nondeterministic time algorithm.$$\tilde{O}(n^{2.94})$$ Certifying that an
n -variablek -CNF is unsatisfiable can be done in Merlin–Arthur time . We also observe an algebrization barrier for the previous$$2^{n/2 - n/O(k)}$$ -time Merlin–Arthur protocol of R. Williams [CCC’16] for$$2^{n/2}\cdot \textrm{poly}(n)$$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for$$\#$$ k -UNSAT running in time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.$$2^{n/2}/n^{\omega (1)}$$ Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time
. Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{4n/5}\cdot \textrm{poly}(n)$$ time.$$2^{2n/3}\cdot \textrm{poly}(n)$$ n integers can be done in Merlin–Arthur time , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{n/3}\cdot \textrm{poly}(n)$$ time.$$2^{0.49991n}\cdot \textrm{poly}(n)$$ -
Naor, Seffi ; Buchbinder, Niv (Ed.)