skip to main content


Search for: All records

Creators/Authors contains: "Jin, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics. 
    more » « less
  4. Abstract We present the results of an experiment investigating the generation of high-order harmonics by a femtosecond near-infrared (NIR) laser pulse in the presence of an extreme ultraviolet (XUV) field provided by a free-electron laser (FEL), a process referred to as XUV-assisted high-order harmonic generation (HHG). Our experimental findings show that the XUV field can lead to a small enhancement in the harmonic yield when the XUV and NIR pulses overlap in time, while a strong decrease of the HHG yield and a red shift of the HHG spectrum is observed when the XUV precedes the NIR pulse. The latter observations are in qualitative agreement with model calculations that consider the effect of a decreased number of neutral emitters but are at odds with the predicted effect of the correspondingly increased ionization fraction on the phase matching. Our study demonstrates the technical feasibility of XUV-assisted HHG experiments at FELs, which may provide new avenues to investigate correlation-driven electron dynamics as well as novel ways to study and control propagation effects and phase matching in HHG. 
    more » « less
  5. The catalytic activity of low-dimensional electrocatalysts is highly dependent on their local atomic structures, particularly those less-coordinated sites found at edges and corners; therefore, a direct probe of the electrocatalytic current at specified local sites with true nanoscopic resolution has become critically important. Despite the growing availability of operando imaging tools, to date it has not been possible to measure the electrocatalytic activities from individual material edges and directly correlate those with the local structural defects. Herein, we show the possibility of using feedback and generation/collection modes of operation of the scanning electrochemical microscope (SECM) to independently image the topography and local electrocatalytic activity with 15-nm spatial resolution. We employed this operando microscopy technique to map out the oxygen evolution activity of a semi-2D nickel oxide nanosheet. The improved resolution and sensitivity enables us to distinguish the higher activities of the materials’ edges from that of the fully coordinated surfaces in operando . The combination of spatially resolved electrochemical information with state-of-the-art electron tomography, that unravels the 3D complexity of the edges, and ab initio calculations allows us to reveal the intricate coordination dependent activity along individual edges of the semi-2D material that is not achievable by other methods. The comparison of the simulated line scans to the experimental data suggests that the catalytic current density at the nanosheet edge is ∼200 times higher than that at the NiO basal plane. 
    more » « less