- PAR ID:
- 10149548
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 24
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 11618 - 11623
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Creating two-dimensional (2D) geometry from nonlayered catalytic materials may significantly advance electrocatalyst design. The 2D morphology of three-dimensional lattices (2D nonlayered materials) offer large structural distortions, massive surface dangling bonds, and coordinated-unsaturated surface atoms, which can induce high surface chemical activity and promote the chemisorption of reactants and fast interfacial charge transfer, thereby enhancing the electrocatalytic performance. In this article, we review typical strategies for structural engineering and manipulation of electronic states to enable the unique electrocatalytic advantages of 2D nonlayered materials. An overview is presented on recent research advances in the development of 2D nonlayered materials for catalyzing the representative electrochemical reactions that are essential to energy and sustainability, including hydrogen evolution, oxygen evolution, oxygen reduction, and CO 2 reduction. For each type of redox reactions, their unique catalytic performance and underlying mechanism are discussed. Important achievements and key challenges are also discussed.more » « less
-
Abstract In situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR‐SEIRAS) is often used to investigate the near‐surface electrocatalytic reaction environment. However, there is a gap in directly correlating the near‐surface reaction environment with electrocatalytic reaction rates. To that end, we designed an electrochemical flow reactor foroperando electrochemical ATR‐SEIRAS and demonstrate its capability with the CO2reduction reaction (CO2RR). Roughened gold catalyst thin films are prepared on ATR silicon crystals as a model system to probe local species under CO2RR conditions in 0.1 M KHCO3. We measured changes in the interfacial CO2concentration as a function of applied potential and electrolyte flow rate inoperando , allowing us to correlate the changes in reaction rates with the observed CO2concentration. Including the choice of the catalyst and electrolyte, coupling hydrodynamic control with ATR‐SEIRAS in this platform enables investigations of how the local microenvironment affects the activity and selectivity of electrochemical reactions. -
Abstract For the electrochemical hydrogen evolution reaction (HER), the electrical properties of catalysts can play an important role in influencing the overall catalytic activity. This is particularly important for semiconducting HER catalysts such as MoS2, which has been extensively studied over the last decade. Herein, on‐chip microreactors on two model catalysts, semiconducting MoS2and semimetallic WTe2, are employed to extract the effects of individual factors and study their relations with the HER catalytic activity. It is shown that electron injection at the catalyst/current collector interface and intralayer and interlayer charge transport within the catalyst can be more important than thermodynamic energy considerations. For WTe2, the site‐dependent activities and the relations of the pure thermodynamics to the overall activity are measured and established, as the microreactors allow precise measurements of the type and area of the catalytic sites. The approach presents opportunities to study electrochemical reactions systematically to help establish rational design principles for future electrocatalysts.
-
Abstract 2D metal–organic frameworks (2D‐MOFs) have recently emerged as promising materials for gas separations, sensing, conduction, and catalysis. However, the stability of these 2D‐MOF catalysts and the tunability over catalytic environments are limited. Herein, it is demonstrated that 2D‐MOFs can act as stable and highly accessible catalyst supports by introducing more firmly anchored photosensitizers as bridging ligands. An ultrathin MOF nanosheet‐based material, Zr‐BTB (BTB = 1,3,5‐tris(4‐carboxyphenyl)benzene), is initially constructed by connecting Zr6‐clusters with the tritopic carboxylate linker. Surface modification of the Zr‐BTB structure was realized through the attachment of porphyrin‐based carboxylate ligands on the coordinatively unsaturated Zr metal sites in the MOF through strong Zr‐carboxylate bond formation. The functionalized MOF nanosheet, namely PCN‐134‐2D, acts as an efficient photocatalyst for1O2generation and artemisinin production. Compared to the 3D analogue (PCN‐134‐3D), PCN‐134‐2D allows for fast reaction kinetics due to the enhanced accessibility of the catalytic sites within the structure and facile substrate diffusion. Additionally, PCN‐134(Ni)‐2D exhibits an exceptional yield of artemisinin, surpassing all reported homo‐ or heterogeneous photocatalysts for the artemisinin production.
-
Nanoelectrode ensembles (NEEs), prepared by Au template synthesis, are presented as a proof-of-concept sample platform to study individual electrodeposited materials by scanning electrochemical cell microscopy (SECCM). With this platform, the non-conductive membrane support does not contribute to the electrocatalytic activity recorded at each electrode. Use of low-density template membranes results in electrodes that are isolated because initial membrane pores are typically separated by significant (microscale) distances. Electrodeposition of catalytic nanoparticles onto the electrodes of the array and observation of electrocatalytic activity are demonstrated to be suitable for correlative SECCM voltammetric mapping and electron microscopy. Suitability of NEEs for studies of surface Au oxidation, hydrazine oxidation, and hydrogen evolution (hydrogen evolution reaction, HER), and at Pt particles on NEEs (Pt-NEEs) for HER is demonstrated.more » « less