- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Adler, Emily L (1)
-
Book, K Riley (1)
-
Botsch, Jamieson C (1)
-
Einarsson, Árni (1)
-
Hart, Ian S (1)
-
Ives, Anthony R (1)
-
Ives, Colin H (1)
-
Jin, Ian (1)
-
McCormick, Amanda R (1)
-
Phillips, Joseph S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Measuring microalgae density in soft‐sediment benthos has challenges for even the most sophisticated methods. If the goal is to assess the photosynthetic potential of epipelon, then microalgae should be sampled only at the surface of the benthos to the depth of light penetration. Furthermore, microalgae density may show spatial and temporal variability that can only be captured by using many point samples and nondestructive sampling. Here, we use simple near‐infrared (NIR) imagery to assess surface density of microalgae in soft underwater sediments and to infer their photosynthetic capacity. In lab studies, NIR imagery gives estimates of epipelon density that are strongly correlated with standard chlorophylla(Chla) assays using pigment extraction and fluorometry ( = 0.70), but NIR imagery is better able to separate experimental treatments. In analyses of sediment samples from a lake, NIR imagery gives estimates of epipelon Chladensity that are strongly correlated to net ecosystem production (NEP). Near‐infrared imagery also gives a fine‐grained assessment of the spatial distribution of epipelon that helps to explain the relationship between epipelon density and NEP. Finally, images from an underwater NIR camera over the course of a wind disturbance event give estimates of the relative density of microalgae that is buried and is likely to be, at least temporarily, photosynthetically inactive. These results show that NIR imagery provides an easy and nondestructive method for sampling surface densities of microalgae which is particularly suitable for remote field locations and for educational settings in which students can generate results with cheap and robust equipment.more » « less
An official website of the United States government
