Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 26, 2026
-
Abstract Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method calledFLocculation viaOrbitalAcousticTrapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.more » « less
-
Abstract The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low‐energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta‐1,5‐diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low‐energy thermal stimulation, coordinated submolecular‐level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It's inherently fast, repeatable, low‐energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low‐grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low‐grade thermal energy harvesting. It also enables low‐energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators.more » « less
An official website of the United States government
