Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Atomically thin materials, leveraging their low‐dimensional geometries and superior mechanical properties, are amenable to exquisite strain manipulation with a broad tunability inaccessible to bulk or thin‐film materials. Such capability offers unexplored possibilities for probing intriguing physics and materials science in the 2D limit as well as enabling unprecedented device applications. Here, the strain‐engineered anisotropic optical and electrical properties in solution‐grown, sub‐millimeter‐size 2D Te are systematically investigated through designing and introducing a controlled buckled geometry in its intriguing chiral‐chain lattice. The observed Raman spectra reveal anisotropic lattice vibrations under the corresponding straining conditions. The feasibility of using buckled 2D Te for ultrastretchable strain sensors with a high gauge factor (≈380) is further explored. 2D Te is an emerging material boasting attractive characteristics for electronics, sensors, quantum devices, and optoelectronics. The results suggest the potential of 2D Te as a promising candidate for designing and implementing flexible and stretchable devices with strain‐engineered functionalities.more » « less
-
Abstract Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic–plastic straining is reported that utilizes GPa‐level laser shocking at a high strain rate (dε/dt) ≈ 106–107s−1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High‐resolution imaging and Raman spectroscopy reveal strain‐induced modifications to the atomic and electronic structure in graphene and first‐principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.more » « less
An official website of the United States government
