skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jing, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, solar-induced chlorophyll fluorescence (SIF) is a promising tool to estimate gross primary production (GPP). Photosynthesis gradually saturates with the increasing light, but fluorescence tends to keep increasing, leading to a nonlinear SIF-GPP relationship. This nonlinearity occurs for sunlit leaves but not for shaded leaves for which photosynthesis is light-limited. However, the separation of sunlit and shaded SIF has not been systematically investigated when estimating GPP from SIF. Therefore, it is promising to develop a model for GPP estimation considering such differences. This study proposed an approach to separate the total canopy SIF emission (SIFtotal) from TROPOspheric Monitoring Instrument (TROPOMI) SIF into their sunlit and shaded components (SIFsun and SIFshade). The nonlinearity and linearity in SIF-GPP relationships for sunlit and shaded leaves were incorporated into a two-leaf hybrid model, which was fitted using flux tower data and then evaluated using leave-one-site-out crossing validation. We also elucidated the distinct SIF-GPP relationships between sunlit and shaded leaves using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model simulation. Compared to previously used linear (R2 = 0.68, RMSE = 2.13 gC⋅m^-2*d^-1) or hyperbolic (R2 = 0.72, RMSE = 2.01 gC⋅m^-2⋅d^-1) model based on the big-leaf assumption, our proposed two-leaf hybrid model has the best performance on GPP estimation (R2 = 0.77, RMSE = 1.79 gC⋅m^-2⋅d^-1). We also applied this two-leaf hybrid model to estimate the global GPP during the main growing season in Northern Hemisphere, which were highly correlated with several existing GPP products, with R2 ranging from 0.79 to 0.88. These results will improve our understanding of the relationship between SIF and GPP for sunlit and shaded leaves and will advance application of satellite SIF data to GPP estimation. 
    more » « less
  2. Free, publicly-accessible full text available April 1, 2026
  3. Abstract Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential. 
    more » « less
  4. null (Ed.)
  5. Sills, Jennifer (Ed.)
  6. null (Ed.)
    Deforestation in the Brazilian Amazon is related to the use of fire to remove natural vegetation and install crop cultures or pastures. In this study, we evaluated the relation between deforestation, land-use and land-cover (LULC) drivers and fire emissions in the Apyterewa Indigenous Land, Eastern Brazilian Amazon. In addition to the official Brazilian deforestation data, we used a geographic object-based image analysis (GEOBIA) approach to perform the LULC mapping in the Apyterewa Indigenous Land, and the Brazilian biomass burning emission model with fire radiative power (3BEM_FRP) to estimate emitted particulate matter with a diameter less than 2.5 µm (PM2.5), a primary human health risk. The GEOBIA approach showed a remarkable advancement of deforestation, agreeing with the official deforestation data, and, consequently, the conversion of primary forests to agriculture within the Apyterewa Indigenous Land in the past three years (200 km2), which is clearly associated with an increase in the PM2.5 emissions from fire. Between 2004 and 2016 the annual average emission of PM2.5 was estimated to be 3594 ton year−1, while the most recent interval of 2017–2019 had an average of 6258 ton year−1. This represented an increase of 58% in the annual average of PM2.5 associated with fires for the study period, contributing to respiratory health risks and the air quality crisis in Brazil in late 2019. These results expose an ongoing critical situation of intensifying forest degradation and potential forest collapse, including those due to a savannization forest-climate feedback, within “protected areas” in the Brazilian Amazon. To reverse this scenario, the implementation of sustainable agricultural practices and development of conservation policies to promote forest regrowth in degraded preserves are essential. 
    more » « less