skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "John, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available October 1, 2026
  3. Promoting regeneration of native trees, likeQuercusspp., is a priority for land managers given the ecological and economic importance of oak woodlands. Although direct seeding may promote recruitment ofQuercusspp., the effectiveness of direct seeding may be greatly reduced in environments where the activity of granivorous rodents is high. Importantly, the activity of granivorous rodents may be highest in environments where oak restoration is most desired, such as habitats invaded by non‐native woody shrubs. Implementing chemical deterrents to granivory should promote direct seeding success; yet it is essential to understand if those deterrents are effective in challenging restoration situations (e.g. areas with dense invasive shrub cover). Moreover, it is important to determine whether chemicals that deter granivory have undesired effects on beneficial ecological interactions, such as animal‐mediated seed dispersal. We used multi‐field site experiments in shrub‐invaded and shrub‐cleared forest plots to compare the removal and dispersal ofQuercus rubraacorns with seed coats treated with a pepper‐based capsaicin extract versus acorns treated with control solutions (i.e. water and ethanol). Seed removal was quantified for 37 days, and seed survival and dispersal were quantified by relocating nail‐tagged acorns after 8 weeks. We found that capsaicin‐treated seeds had a significantly higher probability of survival compared to seeds treated with control solutions; the presence of the invasive shrubRhamnus catharticaincreased post‐dispersal seed consumption regardless of seed‐coat treatment; capsaicin did not affect acorn dispersal distance; and the concentration of capsaicin coatings on acorns declined over time in the field. 
    more » « less
    Free, publicly-accessible full text available March 21, 2026
  4. ABSTRACT Mice in the genusPeromyscusare abundant and geographically widespread in North America, serving as reservoirs for zoonotic pathogens, includingBorrelia burgdorferi(B. burgdorferi), the causative agent of Lyme disease, transmitted byIxodes scapularisticks. While the white‐footed mouse (Peromyscus leucopus(P. leucopus)) is the primary reservoir in the United States, the deer mouse (P. maniculatus), an ecologically similar congener, rarely transmits the pathogen to biting ticks. Understanding the factors that allow these similar species to serve as a poor and competent reservoir is critical for understanding tick‐borne disease ecology and epidemiology, especially as climate change expands the habitats where ticks can transmit pathogens. Our study investigated immunological differences between these rodent species. Specifically, we compared the expression of six immune genes (i.e., TLR‐2, IFN‐γ, IL‐6, IL‐10, GATA‐3, TGF‐β) broadly involved in bacterial recognition, elimination, and/or pathology mitigation in ear biopsies collected by the National Ecological Observatory Network (NEON) as part of their routine surveillance. A principal components analysis indicated that immune gene expression in both species varied in two dimensions: TLR2, IFN‐γ, IL‐6, and IL‐10 (comprising PC1) and TGF‐β and GATA3 (comprising PC2) expression tended to covary within individuals. However, when we analyzed expression differences of each gene singly between species,P. maniculatusexpressed more TLR2, IL‐6, and IL‐10 but less IFN‐γ and GATA3 thanP. leucopus. This immune profile could partly explain whyP. leucopusis a better reservoir for bacterial pathogens such asB. burgdorferi. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. Free, publicly-accessible full text available July 2, 2026
  6. Rudi, Knut (Ed.)
    ABSTRACT Functional studies of host-microbe interactions benefit from natural model systems that enable the exploration of molecular mechanisms at the host-microbe interface. BioluminescentVibrio fischericolonize the light organ of the Hawaiian bobtail squid,Euprymna scolopes, and this binary model has enabled advances in understanding host-microbe communication, colonization specificity,in vivobiofilms, intraspecific competition, and quorum sensing. The hummingbird bobtail squid,Euprymna berryi,can be generationally bred and maintained in lab settings and has had multiple genes deleted by CRISPR approaches. The prospect of expanding the utility of the light organ model system by producing multigenerational host lines led us to determine the extent to which theE. berryilight organ symbiosis parallels known processes inE. scolopes. However, the nature of theE. berryilight organ, including its microbial constituency and specificity for microbial partners, has not been examined. In this report, we isolated bacteria fromE. berryianimals and tank water. Assays of bacterial behaviors required in the host, as well as host responses to bacterial colonization, illustrate largely parallel phenotypes inE. berryiandE. scolopeshatchlings. This study revealsE. berryito be a valuable comparative model to complement studies inE. scolopes.IMPORTANCEMicrobiome studies have been substantially advanced by model systems that enable functional interrogation of the roles of the partners and the molecular communication between those partners. TheEuprymna scolopes-Vibrio fischerisystem has contributed foundational knowledge, revealing key roles for bacterial quorum sensing broadly and in animal hosts, for bacteria in stimulating animal development, for bacterial motility in accessing host sites, and forin vivobiofilm formation in development and specificity of an animal’s microbiome.Euprymna berryiis a second bobtail squid host, and one that has recently been shown to be robust to laboratory husbandry and amenable to gene knockout. This study identifiesE. berryias a strong symbiosis model host due to features that are conserved with those ofE. scolopes, which will enable the extension of functional studies in bobtail squid symbioses. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  7. Oxygen is a common impurity in AlN samples. Using hybrid density functional calculations, we investigate the role of substitutional oxygen (ON) in the optical absorption. We construct configuration coordination diagrams for ON and related complexes. Our results indicate that an optical transition involving ON− (a DX center) gives rise to an absorption band peaked at 2.22 eV, suggesting it is a source of the absorption band with an onset at ∼ 2 eV observed in oxygen-containing samples. We also propose that neutral ON–DX complexes can form, which would give rise to absorption peaking at 3.06 eV. In addition, we find that oxygen, in spite of its DX character, may behave as an “optically shallow donor” and be involved in optical transitions from deep defect states to the conduction band. This observation provides an alternative physical mechanism for the optical absorption bands observed in AlN samples in the visible and ultraviolet (UV) region. 
    more » « less
    Free, publicly-accessible full text available February 10, 2026
  8. The utility of seed addition to promote tree regeneration can be greatly limited by animals that consume seeds. Moreover, given that restoration often occurs in forests where invasive shrubs are abundant, and evidence that invasive shrubs can increase granivory, it is important to explore whether methods for reducing granivory work equally well in invaded and uninvaded habitats. We used a multi-site field experiment spanning 160 days to explore whether coating seeds of Prunus serotina with capsaicin extract leads to reduced granivory in habitats with or without invasive shrubs ( Rhamnus cathartica). Capsaicin-coated seeds were removed at a similar rate to uncoated seeds, but seeds in invaded plots had a 78.8% higher rate of removal compared to plots without invasive shrubs. Our findings suggest that managers seeking to encourage regeneration of native trees using direct seeding should consider invasive shrub removal as a top priority to limit the loss of seeds once sown. 
    more » « less
  9. Understanding and monitoring nearshore environments is essential, given that these fine-scaled ecosystems are integral to human well-being. While satellites offer an opportunity to gain synchronous and spatially extensive data of coastal areas, off-the-shelf calibrated satellite sea surface temperature (SST) measurements have only been available at coarse resolutions of 1 km or larger. In this study, we develop a novel methodology to create a simple linear equation to calibrate fine-scale Landsat thermal infrared radiation brightness temperatures (calibrated for land sensing) to derive SST at a resolution of 100 m. The constants of this equation are derived from correlations of coincident MODIS SST and Landsat data, which we filter to find optimal pairs. Validation against in situ sensor data at varying distances from the shore in Northern California shows that our SST estimates are more accurate than prior off-the-shelf Landsat data calibrated for land surfaces. These fine-scale SST estimates also demonstrate superior accuracy compared with coincident MODIS SST estimates. The root mean square error for our minimally filtered dataset (n = 557 images) ranges from 0.76 to 1.20 °C with correlation coefficients from r = 0.73 to 0.92, and for our optimal dataset (n = 229 images), the error is from 0.62 to 0.98 °C with correlations from r = 0.83 to 0.92. Potential error sources related to stratification and seasonality are examined and we conclude that Landsat data represent skin temperatures with an error between 0.62 and 0.73 °C. We discuss the utility of our methodology for enhancing coastal monitoring efforts and capturing previously unseen spatial complexity. Testing the calibration methodology on Landsat images before and after the temporal bounds of accurate MODIS SST measurements shows successful calibration with lower errors than the off-the-shelf, land-calibrated Landsat product, extending the applicability of our approach. This new approach for obtaining high-resolution SST data in nearshore waters may be applied to other upwelling regions globally, contributing to improved coastal monitoring, management, and research. 
    more » « less