Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding and characterizing the intrinsic properties of charge carrier transport across the interfaces in van der Waals heterostructures is critical to their applications in modern electronics, thermoelectrics, and optoelectronics. However, there are very few published cross-plane resistivity measurements of thin samples because these inherently 2-probe measurements must be corrected for contact and lead resistances. Here, we present a method to extract contact resistances and metal lead resistances by fitting the width dependence of the contact end voltages of top and bottom electrodes of different linewidths to a model based on current crowding. These contributions are then subtracted from the total 2-probe cross-plane resistance to obtain the cross-plane resistance of the material itself without needing multiple devices and/or etching steps. This approach was used to measure cross-plane resistivities of a (PbSe)1(VSe2)1 heterostructure containing alternating layers of PbSe and VSe2 with random in-plane rotational disorder. Several samples measured exhibited a 4 order of magnitude difference between cross-plane and in-plane resistivities over the 6–300 K temperature range. We also reported the first observation of charge density wave transition in the cross-plane transport of (PbSe)1(VSe2)1 heterostructure. The device fabrication process is fully lift-off compatible, and the method developed enables the straightforward measurement of the resistivity anisotropy of most thin film materials with nm thicknesses.more » « lessFree, publicly-accessible full text available September 17, 2025
-
This study explores the effects of alternating current-induced electromagnetic field (EMF) on mitigating brackish water irrigation and soil salinization impacts. Greenhouse experiments were conducted to evaluate the effect of EMF on plant growth, soil properties, and leaching of ions under different conditions, including using brackish water and desalinated water for irrigation and soil compost incorporation. The experiment was performed with four types of irrigation water using soil columns representing field soil layers. EMF-treated brackish water maintained a sodium adsorption ratio of 2.7 by leaching Na+ from the soil. EMF-treated irrigation columns showed an increase in soil organic carbon by 7% over no EMF-treated columns. Compost treatment reduced the leaching of NO3− from the soil by more than 15% using EMF-treated irrigation water. EMF-treated brackish water and compost treatment enhanced plant growth by increasing wet weight by 63.6%, dry weight by 71.4%, plant height by 22.8%, and root length by 115.8% over no EMF and compost columns. EMF-treated agricultural water without compost also showed growth improvements. The findings suggest that EMF treatment, especially combined with compost, offers an effective, low-cost, and eco-friendly solution to mitigate soil salinization, promoting plant growth by improving nutrient availability and soil organic carbon.
Free, publicly-accessible full text available June 1, 2025 -
Increasing soil salinity and degraded irrigation water quality are major challenges for agriculture. This study investigated the effects of irrigation water quality and incorporating compost (3% dry mass in soil) on minimizing soil salinization and promoting sustainable cropping systems. A greenhouse study used brackish water (electrical conductivity of 2010 µS/cm) and agricultural water (792 µS/cm) to irrigate Dundale pea and clay loam soil. Compost treatment enhanced soil water retention with soil moisture content above 0.280 m3/m3, increased plant carbon assimilation by ~30%, improved plant growth by >50%, and reduced NO3− leaching from the soil by 16% and 23.5% for agricultural and brackish water irrigation, respectively. Compared to no compost treatment, the compost-incorporated soil irrigated with brackish water showed the highest plant growth by increasing plant fresh weight by 64%, dry weight by 50%, root length by 121%, and plant height by 16%. Compost treatment reduced soil sodicity during brackish water irrigation by promoting the leaching of Cl− and Na+ from the soil. Compost treatment provides an environmentally sustainable approach to managing soil salinity, remediating the impact of brackish water irrigation, improving soil organic matter, enhancing the availability of water and nutrients to plants, and increasing plant growth and carbon sequestration potential.
Free, publicly-accessible full text available May 1, 2025 -
Free, publicly-accessible full text available May 13, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
The resource‐availability hypothesis (RAH) and the intraspecific RAH (RAH intra ), posit that resources, (i.e. nutrients) control plant antiherbivore defenses. Both hypotheses predict that in low‐resource environments, plant growth is slow, and constitutive defense is high. In high‐resource environments, however, the RAH predicts that plant growth is fast, and constitutive defense is low, whereas the RAH intra predicts that increased resources attract more herbivores, and this intensified grazing pressure leads to high constitutive defense. Salt marshes are nutrient‐limited ecosystems threatened by eutrophication and chronic herbivory, yet we know little about how these stressors shape saltmarsh plant antiherbivore defenses, which influence trophic interactions and ecosystem resilience. We manipulated resource availability via nutrient addition and herbivory via the marsh periwinkle Littoraria irrorata , on the saltmarsh foundation species Spartina alterniflora , in mesocosms. Because plant age can also influence trait variation, we measured traits in both original and clonally‐grown new stems. Feeding assays then evaluated how treatments and plant age affected subsequent Littoraria consumption of Spartina . Nutrient addition stimulated growth, while decreasing defensive traits (e.g. fiber and silica content), following the RAH. Herbivory enhanced belowground production and increased stem diameter, yet did not induce defensive traits, contrary to our expectations. Herbivory plus nutrients increased Spartina biomass and reduced phenolics, a defensive trait, further supporting the RAH. Regardless of treatment, clonally‐grown new stems had greater variation in measured traits. Despite altered traits, however, treatments and plant age did not affect Littoraria consumption. Our results support the RAH and part of the RAH intra and suggest: 1) nutrient availability is a primary driver of plant trait change and 2) plant age controls the magnitude of trait variation in Spartina . Further, our findings indicate that eutrophic conditions may not always increase top‒down control by herbivores, and in some instances can enhance saltmarsh resilience against sea‐level rise via stimulated Spartina biomass production.more » « less
-
Abstract As sea‐level rise converts coastal forest to salt marsh, marsh arthropods may migrate inland; however, the resulting changes in arthropod communities, including the stage of forest retreat that first supports saltmarsh species, remain unknown. Furthermore, the ghost forest that forms in the wake of rapid forest retreat offers an unknown quality of habitat to marsh arthropods. In a migrating marsh in Virginia, USA, ground‐dwelling arthropod communities were assessed across the forest‐to‐marsh gradient, and functional use of ghost forest and high marsh habitats was evaluated to determine whether marsh arthropods utilized expanded marsh in the same way as existing marsh. Diet and body condition were compared for two marsh species found in both high marsh and ghost forest (the detritivore amphipod,
Orchestia grillus , and the hunting spider,Pardosa littoralis ). Community composition differed among zones along the gradient, driven largely by retreating forest taxa (e.g., Collembola), marsh taxa migrating into the forest (e.g.,O. grillus ), and unique taxa (e.g., Hydrophilinae beetles) at the ecotone. The low forest was the most inland zone to accommodate the saltmarsh speciesO. grillus , suggesting that inland migration of certain saltmarsh arthropods may co‐occur with early saltmarsh plant migration and precede complete tree canopy die‐off. Functionally,O. grillus occupied a larger trophic niche in the ghost forest than the high marsh, likely by consuming both marsh and terrestrial material. Despite this, both observed marsh species primarily consumed from the marsh grass food web in both habitats, and no lasting differences in body condition were observed. For the species and functional traits assessed, the ghost forest and high marsh did not show major differences at this site. Forest retreat and marsh migration may thus provide an important opportunity for generalist saltmarsh arthropods to maintain their habitat extent in the face of marsh loss due to sea‐level rise. -
We utilize a coupled economy–agroecology–hydrology modeling framework to capture the cascading impacts of climate change mitigation policy on agriculture and the resulting water quality cobenefits. We analyze a policy that assigns a range of United States government’s social cost of carbon estimates ($51, $76, and $152/ton of CO2-equivalents) to fossil fuel–based CO2emissions. This policy raises energy costs and, importantly for agriculture, boosts the price of nitrogen fertilizer production. At the highest carbon price, US carbon emissions are reduced by about 50%, and nitrogen fertilizer prices rise by about 90%, leading to an approximate 15% reduction in fertilizer applications for corn production across the Mississippi River Basin. Corn and soybean production declines by about 7%, increasing crop prices by 6%, while nitrate leaching declines by about 10%. Simulated nitrate export to the Gulf of Mexico decreases by 8%, ultimately shrinking the average midsummer area of the Gulf of Mexico hypoxic area by 3% and hypoxic volume by 4%. We also consider the additional benefits of restored wetlands to mitigate nitrogen loading to reduce hypoxia in the Gulf of Mexico and find a targeted wetland restoration scenario approximately doubles the effect of a low to moderate social cost of carbon. Wetland restoration alone exhibited spillover effects that increased nitrate leaching in other parts of the basin which were mitigated with the inclusion of the carbon policy. We conclude that a national climate policy aimed at reducing greenhouse gas emissions in the United States would have important water quality cobenefits.