skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jones, Jacob L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2025
  2. Free, publicly-accessible full text available October 17, 2025
  3. Free, publicly-accessible full text available June 11, 2025
  4. Abstract The solid‐state synthesis of perovskite BiFeO3has been a topic of interest for decades. Many studies have reported challenges in the synthesis of BiFeO3from starting oxides of Bi2O3and Fe2O3, mainly associated with the development of persistent secondary phases such as Bi25FeO39(sillenite) and Bi2Fe4O9(mullite). These secondary phases are thought to be a consequence of unreacted Fe‐rich and Bi‐rich regions, that is, incomplete interdiffusion. In the present work, in situ high‐temperature X‐ray diffraction is used to demonstrate that Bi2O3first reacts with Fe2O3to form sillenite Bi25FeO39, which then reacts with the remaining Fe2O3to form BiFeO3. Therefore, the synthesis of perovskite BiFeO3is shown to occur via a two‐step reaction sequence with Bi25FeO39as an intermediate compound. Because Bi25FeO39and the γ‐Bi2O3phase are isostructural, it is difficult to discriminate them solely from X‐ray diffraction. Evidence is presented for the existence of the intermediate sillenite Bi25FeO39using quenching experiments, comparisons between Bi2O3behavior by itself and in the presence of Fe2O3, and crystal structure examination. With this new information, a proposed reaction pathway from the starting oxides to the product is presented. 
    more » « less
  5. The impact of the high-power impulse magnetron sputtering (HiPIMS) pulse width on the crystallization, microstructure, and ferroelectric properties of undoped HfO2 films is investigated. HfO2 films were sputtered from a hafnium metal target in an Ar/O2 atmosphere, varying the instantaneous power density by changing the HiPIMS pulse width with fixed time-averaged power and pulse frequency. The pulse width is shown to affect the ion-to-neutral ratio in the depositing species with the shortest pulse durations leading to the highest ion fraction. In situ x-ray diffraction measurements during crystallization demonstrate that the HiPIMS pulse width impacts nucleation and phase formation, with an intermediate pulse width of 110 μs stabilizing the ferroelectric phase over the widest temperature range. Although the pulse width impacts the grain size with the lowest pulse width resulting in the largest grain size, the grain size does not strongly correlate with the phase content or ferroelectric behavior in these films. These results suggest that precise control over the energetics of the depositing species may be beneficial for forming the ferroelectric phase in this material. 
    more » « less
  6. Ferroelectric hafnium-zirconium oxide (HZO) is an excellent candidate for low-power non-volatile memory applications due to its demonstrated ferroelectricity at the nanoscale and compatibility with silicon-based technologies. The interface of HZO in contact with its electrode, typically TiN in a metal–ferroelectric–metal (MFM) capacitor configuration, is of particular interest because factors, such as volume confinement, impurity concentration, interfacial layers, thermal expansion mismatch, and defect trapping, are believed to play a crucial role in the ferroelectric performance of HZO-based devices. Processing variables, such as precursor type, oxygen source, dose duration, and deposition temperature, are known to strongly affect the quality of the oxide–metal interface. However, not many studies have focused on the effect of breaking or maintaining vacuum during MFM deposition. In this study, sequential, no-atmosphere processing (SNAP) is employed to avoid atmospheric exposure, where electrode TiN and ferroelectric HZO are deposited sequentially in the atomic layer deposition chamber without breaking vacuum. The effect of breaking vacuum during the sequential deposition steps is elucidated by fabricating and characterizing MFM capacitors with and without intentional vacuum breaks prior to the deposition of the HZO and top TiN. Using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS), we reveal that breaking vacuum after bottom TiN electrode deposition leads to interfacial oxidation and increased carbon contamination, which preferentially stabilizes the non-ferroelectric tetragonal phase and lead to diminished remanent polarization. Avoiding carbon impurities and interfacial TiOx at the HZO and TiN interface using SNAP leads to heightened remanent polarization, reduced leakage current density, and elimination of the wake-up effect. Our work highlights the effect of vacuum breaking on the processing-structure-properties of HZO-based capacitors, revealing that maintaining vacuum can significantly improve ferroelectric properties. 
    more » « less
  7. Sn(II)-based perovskite oxides, being the subject of longstanding theoretical interest for the past two decades, have been synthesized for the first time in the form of nano eggshell particle morphologies. All past reported synthetic attempts have been unsuccessful owing to their metastable nature, i.e. , by their thermodynamic instability towards decomposition to their constituent oxides. A new approach was discovered that finally provides an effective solution to surmounting this intractable synthetic barrier and which can be the key to unlocking the door to many other predicted metastable oxides. A low-melting KSn2Cl5 salt was utilized to achieve a soft topotactic exchange of Sn(II) cations into a Ba-containing perovskite, i.e., BaHfO3 with particle sizes of ∼350 nm, at a low reaction temperature of 200 °C. The resulting particles exhibit nanoshell-over-nanoshell morphologies, i.e., with SnHfO3 forming as ∼20 nm thick shells over the surfaces of the BaHfO3 eggshell particles. Formation of the metastable SnHfO3 is found to be thermodynamically driven by the co-production of the highly stable BaCl2 and KCl side products. Despite this, total energy calculations show that Sn(II) distorts from the A-site asymmetrically and randomly and the interdiffusion has a negligible impact on the energy of the system (i.e., layered vs. solid solution). Additionally, nano eggshell particle morphologies of BaHfO3 were found to yield highly pure SnHfO3 for the first time, thus circumventing the intrinsic ion-diffusion limits occurring at this low reaction temperature. In summary, these results demonstrate that the metastability of many theoretically predicted Sn(II)-perovskites can be overcome by leveraging the high cohesive energies of the reactants, the exothermic formation of a stable salt side product, and a shortened diffusion pathway for the Sn(II) cations. 
    more » « less
  8. Abstract Hf 0.5 Zr 0.5 O 2 (HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al 2 O 3 interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al 2 O 3 that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al 2 O 3 at the top interface demonstrate a higher remanent polarization (2P r ∼ 42 μ C cm −2 ) and endurance limit beyond 10 8 cycles at a cycling field amplitude of 3.5 MV cm −1 . We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al 2 O 3 layer. We demonstrate that the use of Al 2 O 3 as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices. 
    more » « less
  9. HfO 2 -based antiferroelectric-like thin films are increasingly being considered for commercial devices. However, even with initial promise, the temperature sensitivity of electrical properties such as loss tangent and leakage current remains unreported. 50 nm thick, 4 at. % Al-doped HfO 2 thin films were synthesized via atomic layer deposition with both top and bottom electrodes being TiN or Pt. A study of their capacitance vs temperature showed that the Pt/Al:HfO 2 /Pt had a relative dielectric permittivity of 23.30 ± 0.06 at room temperature with a temperature coefficient of capacitance (TCC) of 78 ± 86 ppm/°C, while the TiN/Al:HfO 2 /TiN had a relative dielectric permittivity of 32.28 ± 0.14 at room temperature with a TCC of 322 ± 41 ppm/°C. The capacitance of both devices varied less than 6% over 1 to 1000 kHz from −125 to 125 °C. Both capacitors maintained loss tangents under 0.03 and leakage current densities of 10 −9 –10 −7 A/cm 2 between −125 and 125 °C. The TiN/Al:HfO 2 /TiN capacitor maintained an energy storage density (ESD) of 18.17 ± 0.79 J/cm 3 at an efficiency of 51.79% ± 2.75% over the −125 to 125 °C range. The Pt/Al:HfO 2 /Pt capacitor also maintained a stable ESD of 9.83 ± 0.26 J/cm 3 with an efficiency of 62.87% ± 3.00% over the same temperature range. Such low losses in both capacitors along with their thermal stability make antiferroelectric-like, Al-doped HfO 2 thin films a promising material for temperature-stable microelectronics. 
    more » « less