skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Joy, Ranjit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In directed energy deposition (DED), accurately controlling and predicting melt pool characteristics is essential for ensuring desired material qualities and geometric accuracies. This paper introduces a robust surrogate model based on recurrent neural network (RNN) architectures—Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU). Leveraging a time series dataset from multi-physics simulations and a three-factor, three-level experimental design, the model accurately predicts melt pool peak temperatures, lengths, widths, and depths under varying conditions. RNN algorithms, particularly Bi-LSTM, demonstrate high predictive accuracy, with an R-square of 0.983 for melt pool peak temperatures. For melt pool geometry, the GRU-based model excels, achieving R-square values above 0.88 and reducing computation time by at least 29%, showcasing its accuracy and efficiency. The RNN-based surrogate model built in this research enhances understanding of melt pool dynamics and supports precise DED system setups.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. In recent decades, laser additive manufacturing has seen rapid development and has been applied to various fields, including the aerospace, automotive, and biomedical industries. However, the residual stresses that form during the manufacturing process can lead to defects in the printed parts, such as distortion and cracking. Therefore, accurately predicting residual stresses is crucial for preventing part failure and ensuring product quality. This critical review covers the fundamental aspects and formation mechanisms of residual stresses. It also extensively discusses the prediction of residual stresses utilizing experimental, computational, and machine learning methods. Finally, the review addresses the challenges and future directions in predicting residual stresses in laser additive manufacturing.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  3. This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

    Design/methodology/approach

    This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

    Findings

    A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

    Originality/value

    Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

     
    more » « less