skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ju, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 20, 2026
  2. This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors. Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by powerful graph neural networks (GNNs). However, predicting interacting dynamics in challenging scenarios such as out-of-distribution shift and complicated underlying rules remains unsolved. In this paper, we propose a new approach named Prototypical Graph ODE (PGODE) to address the problem. The core of PGODE is to incorporate prototype decomposition from contextual knowledge into a continuous graph ODE framework. Specifically, PGODE employs representation disentanglement and system parameters to extract both object-level and system-level contexts from historical trajectories, which allows us to explicitly model their independent influence and thus enhances the generalization capability under system changes. Then, we integrate these disentangled latent representations into a graph ODE model, which determines a combination of various interacting prototypes for enhanced model expressivity. The entire model is optimized using an end-to-end variational inference framework to maximize the likelihood. Extensive experiments in both in-distribution and out-of-distribution settings validate the superiority of PGODE compared to various baselines. 
    more » « less
  3. Free, publicly-accessible full text available December 1, 2025
  4. Leading graph ordinary differential equation (ODE) models have offered generalized strategies to model interacting multi-agent dynamical systems in a data-driven approach. They typically consist of a temporal graph encoder to get the initial states and a neural ODE-based generative model to model the evolution of dynamical systems. However, existing methods have severe deficiencies in capacity and efficiency due to the failure to model high-order correlations in long-term temporal trends. To tackle this, in this paper, we propose a novel model named High-Order graPh ODE (HOPE) for learning from dynamic interaction data, which can be naturally represented as a graph. It first adopts a twin graph encoder to initialize the latent state representations of nodes and edges, which consists of two branches to capture spatio-temporal correlations in complementary manners. More importantly, our HOPE utilizes a second-order graph ODE function which models the dynamics for both nodes and edges in the latent space respectively, which enables efficient learning of long-term dependencies from complex dynamical systems. Experiment results on a variety of datasets demonstrate both the effectiveness and efficiency of our proposed method. 
    more » « less