skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Julius, Hayden"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We characterize bijective linear maps on [Formula: see text] that preserve the square roots of an idempotent matrix (of any rank). Every such map can be presented as a direct sum of a map preserving involutions and a map preserving square-zero matrices. Next, we consider bijective linear maps that preserve the square roots of a rank-one nilpotent matrix. These maps do not have standard forms when compared to similar linear preserver problems. 
    more » « less