skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On maps preserving square roots of idempotent and rank-one nilpotent matrices
We characterize bijective linear maps on [Formula: see text] that preserve the square roots of an idempotent matrix (of any rank). Every such map can be presented as a direct sum of a map preserving involutions and a map preserving square-zero matrices. Next, we consider bijective linear maps that preserve the square roots of a rank-one nilpotent matrix. These maps do not have standard forms when compared to similar linear preserver problems.  more » « less
Award ID(s):
1653002
PAR ID:
10277000
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Algebra and Its Applications
ISSN:
0219-4988
Page Range / eLocation ID:
2250123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In open quantum systems, it is known that if the system and environment are in a product state, the evolution of the system is given by a linear completely positive (CP) Hermitian map. CP maps are a subset of general linear Hermitian maps, which also include non completely positive (NCP) maps. NCP maps can arise in evolutions such as non-Markovian evolution, where the CP divisibility of the map (writing the overall evolution as a composition of CP maps) usually fails. Positive but NCP maps are also useful as entanglement witnesses. In this paper, we focus on transforming an initial NCP map to a CP map through composition with the asymmetric depolarizing map. We use separate asymmetric depolarizing maps acting on the individual subsystems. Previous work have looked at structural physical approximation (SPA), which is a CP approximation of an NCP map using a mixture of the NCP map with a completely depolarizing map. We prove that the composition can always be made CP without completely depolarizing in any direction. It is possible to depolarize less in some directions. We give the general proof by using the Choi matrix and an isomorphism from a maximally entangled two qudit state to a set of qubits. We also give measures that describe the amount of disturbance the depolarization introduces to the original map. Given our measures, we show that asymmetric depolarization has many advantages over SPA in preserving the structure of the original NCP map. Finally, we give some examples. For some measures and examples, completely depolarizing (while not necessary) in some directions can give a better approximation than keeping the depolarizing parameters bounded by the required depolarization if symmetric depolarization is used. 
    more » « less
  2. Munemasa, Akihiro; Murai, Satoshi; Rhoades, Brendon; Speyer, David; Maldeghem, Hendrik Van (Ed.)
    We study the behavior of h -vectors associated to matroid complexes under weak maps, or inclusions of matroid polytopes. Specifically, we show that the h -vector of the order complex of the lattice of flats of a matroid is component-wise non-increasing under a weak map. This result extends to the flag h -vector. We note that the analogous result also holds for independence complexes and rank-preserving weak maps. 
    more » « less
  3. Models in which the covariance matrix has the structure of a sparse matrix plus a low rank perturbation are ubiquitous in data science applications. It is often desirable for algorithms to take advantage of such structures, avoiding costly matrix computations that often require cubic time and quadratic storage. This is often accomplished by performing operations that maintain such structures, for example, matrix inversion via the Sherman–Morrison–Woodbury formula. In this article, we consider the matrix square root and inverse square root operations. Given a low rank perturbation to a matrix, we argue that a low‐rank approximate correction to the (inverse) square root exists. We do so by establishing a geometric decay bound on the true correction's eigenvalues. We then proceed to frame the correction as the solution of an algebraic Riccati equation, and discuss how a low‐rank solution to that equation can be computed. We analyze the approximation error incurred when approximately solving the algebraic Riccati equation, providing spectral and Frobenius norm forward and backward error bounds. Finally, we describe several applications of our algorithms, and demonstrate their utility in numerical experiments. 
    more » « less
  4. In this paper, we perform a systematic study of permutation statistics and bijective maps on permutations in which we identify and prove 122 instances of the homomesy phenomenon. Homomesy occurs when the average value of a statistic is the same on each orbit of a given map. The maps we investigate include the Lehmer code rotation, the reverse, the complement, the Foata bijection, and the Kreweras complement. The statistics studied relate to familiar notions such as inversions, descents, and permutation patterns, and also more obscure constructs. Besides the many new homomesy results, we discuss our research method, in which we used SageMath to search the FindStat combinatorial statistics database to identify potential homomesies. 
    more » « less
  5. We prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor Tcw,q is the square of its border rank for q > 2 and that the border rank of its Kronecker cube is the cube of its border rank for q > 4. This answers questions raised implicitly by Coppersmith & Winograd (1990, §11) and explicitly by Bl¨aser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range. In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen’s laser method, introducing a skew-symmetric version of the Coppersmith– Winograd tensor, Tskewcw,q. For q = 2, the Kronecker square of this tensor coincides with the 3 × 3 determinant polynomial, det3 ∈ C9 ⊗ C9 ⊗ C9, regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two. We determine new upper bounds for the (Waring) rank and the (Waring) border rank of det3, exhibiting a strict submultiplicative behaviour for Tskewcw,2 which is promising for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C3 ⊗ C3 ⊗ C3. 
    more » « less