skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Justison, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gene flow is increasingly recognized as an important macroevolutionary process. The many mechanisms that contribute to gene flow (e.g. introgression, hybridization, lateral gene transfer) uniquely affect the diversification of dynamics of species, making it important to be able to account for these idiosyncrasies when constructing phylogenetic models. Existing phylogenetic‐network simulators for macroevolution are limited in the ways they model gene flow.We presentSiPhyNetwork, an R package for simulating phylogenetic networks under a birth–death‐hybridization process.Our package unifies the existing birth–death‐hybridization models while also extending the toolkit for modelling gene flow. This tool can create patterns of reticulation such as hybridization, lateral gene transfer, and introgression.Specifically, we model different reticulate events by allowing events to either add, remove or keep constant the number of lineages. Additionally, we allow reticulation events to be trait dependent, creating the ability to model the expanse of isolating mechanisms that prevent gene flow. This tool makes it possible for researchers to model many of the complex biological factors associated with gene flow in a phylogenetic context. 
    more » « less
  2. No abstract available. 
    more » « less