Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce an innovative method for incremental nonparametric probabilistic inference in high-dimensional state spaces. Our approach leverages slices from high-dimensional surfaces to efficiently approximate posterior distributions of any shape. Unlike many existing graph-based methods, our slices perspective eliminates the need for additional intermediate reconstructions, maintaining a more accurate representation of posterior distributions. Additionally, we propose a novel heuristic to balance between accuracy and efficiency, enabling real-time operation in nonparametric scenarios. In empirical evaluations on synthetic and real-world datasets, our slices approach consistently outperforms other state-of-the-art methods. It demonstrates superior accuracy and achieves a significant reduction in computational complexity, often by an order of magnitude.more » « lessFree, publicly-accessible full text available October 14, 2025
-
We introduce an innovative method for incremental nonparametric probabilistic inference in high-dimensional state spaces. Our approach leverages slices from high-dimensional surfaces to efficiently approximate posterior distributions of any shape. Unlike many existing graph-based methods, our slices perspective eliminates the need for additional intermediate reconstructions, maintaining a more accurate representation of posterior distributions. Additionally, we propose a novel heuristic to balance between accuracy and efficiency, enabling real-time operation in nonparametric scenarios. In empirical evaluations on synthetic and real-world datasets, our slices approach consistently outperforms other state-of-the-art methods. It demonstrates superior accuracy and achieves a significant reduction in computational complexity, often by an order of magnitude.more » « lessFree, publicly-accessible full text available October 14, 2025
-
Yashinski, Melisa (Ed.)To achieve human-level dexterity, robots must infer spatial awareness from multimodal sensing to reason over contact interactions. During in-hand manipulation of novel objects, such spatial awareness involves estimating the object’s pose and shape. The status quo for in-hand perception primarily uses vision and is restricted to tracking a priori known objects. Moreover, visual occlusion of objects in hand is imminent during manipulation, preventing current systems from pushing beyond tasks without occlusion. We combined vision and touch sensing on a multifingered hand to estimate an object’s pose and shape during in-hand manipulation. Our method, NeuralFeels, encodes object geometry by learning a neural field online and jointly tracks it by optimizing a pose graph problem. We studied multimodal in-hand perception in simulation and the real world, interacting with different objects via a proprioception-driven policy. Our experiments showed final reconstructionmore » « less
F scores of 81% and average pose drifts of 4.7 millimeters, which was further reduced to 2.3 millimeters with known object models. In addition, we observed that, under heavy visual occlusion, we could achieve improvements in tracking up to 94% compared with vision-only methods. Our results demonstrate that touch, at the very least, refines and, at the very best, disambiguates visual estimates during in-hand manipulation. We release our evaluation dataset of 70 experiments, FeelSight, as a step toward benchmarking in this domain. Our neural representation driven by multimodal sensing can serve as a perception backbone toward advancing robot dexterity.Free, publicly-accessible full text available November 13, 2025 -
Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured from various viewpoints. Unfortunately, capturing surround view (360° viewpoint) images is impossible or impractical in many real-world imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation. In these restricted baseline imaging scenarios, the GS algorithm suffers from a well-known ‘missing cone’ problem, which results in poor reconstruction along the depth axis. In this paper, we demonstrate that using transient data (from sonars) allows us to address the missing cone problem by sampling high-frequency data along the depth axis. We extend the Gaussian splatting algorithms for two commonly used sonars and propose fusion algorithms that simultaneously utilize RGB camera data and sonar data. Through simulations, emulations, and hardware experiments across various imaging scenarios, we show that the proposed fusion algorithms lead to significantly better novel view synthesis (5 dB improvement in PSNR) and 3D geometry reconstruction (60% lower Chamfer distance).more » « lessFree, publicly-accessible full text available September 23, 2025
-
Underwater perception and 3D surface reconstruction are challenging problems with broad applications in construction, security, marine archaeology, and environmental monitoring. Treacherous operating conditions, fragile surroundings, and limited navigation control often dictate that submersibles restrict their range of motion and, thus, the baseline over which they can capture measurements. In the context of 3D scene reconstruction, it is well-known that smaller baselines make reconstruction more challenging. Our work develops a physics-based multimodal acoustic-optical neural surface reconstruction framework (AONeuS) capable of effectively integrating high-resolution RGB measurements with low-resolution depth-resolved imaging sonar measurements. By fusing these complementary modalities, our framework can reconstruct accurate high-resolution 3D surfaces from measurements captured over heavily-restricted baselines. Through extensive simulations and in-lab experiments, we demonstrate that AONeuS dramatically outperforms recent RGB-only and sonar-only inverse-differentiable-rendering--based surface reconstruction methods.more » « lessFree, publicly-accessible full text available July 13, 2025
-
We consider the problem of learning error covariance matrices for robotic state estimation. The convergence of a state estimator to the correct belief over the robot state is dependent on the proper tuning of noise models. During inference, these models are used to weigh different blocks of the Jacobian and error vector resulting from linearization and hence, additionally affect the stability and convergence of the non-linear system. We propose a gradient-based method to estimate well-conditioned covariance matrices by formulating the learning process as a constrained bilevel optimization problem over factor graphs. We evaluate our method against baselines across a range of simulated and real-world tasks and demonstrate that our technique converges to model estimates that lead to better solutions as evidenced by the improved tracking accuracy on unseen test trajectories.more » « lessFree, publicly-accessible full text available May 13, 2025
-
This paper presents a method for robust optimization for online incremental Simultaneous Localization and Mapping (SLAM). Due to the NP-Hardness of data association in the presence of perceptual aliasing, tractable (approximate) approaches to data association will produce erroneous measurements. We require SLAM back-ends that can converge to accurate solutions in the presence of outlier measurements while meeting online efficiency constraints. Existing robust SLAM methods either remain sensitive to outliers, become increasingly sensitive to initialization, or fail to provide online efficiency. We present the robust incremental Smoothing and Mapping (riSAM) algorithm, a robust back-end optimizer for incremental SLAM based on Graduated Non-Convexity. We demonstrate on benchmarking datasets that our algorithm achieves online efficiency, outperforms existing online approaches, and matches or improves the performance of existing offline methods.more » « less
-
In this work, we investigate the problem of incrementally solving constrained non-linear optimization problems formulated as factor graphs. Prior incremental solvers were either restricted to the unconstrained case or required periodic batch relinearizations of the objective and constraints which are expensive and detract from the online nature of the algorithm. We present InCOpt, an Augmented Lagrangian-based incremental constrained optimizer that views matrix operations as message passing over the Bayes tree. We first show how the linear system, resulting from linearizing the constrained objective, can be represented as a Bayes tree. We then propose an algorithm that views forward and back substitutions, which naturally arise from solving the Lagrangian, as upward and downward passes on the tree. Using this formulation, In-COpt can exploit properties such as fluid/online relinearization leading to increased accuracy without a sacrifice in runtime. We evaluate our solver on different applications (navigation and manipulation) and provide an extensive evaluation against existing constrained and unconstrained solvers.more » « less