Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundStudents' identification with engineering is intertwined culturally with being smart. Broadly, engineering students are often considered to be smart by others and by themselves, and these beliefs about smartness—what it is and who has enough of it to be an engineer—are a fundamental and limiting aspect of students' experiences. PurposeThe purpose of this study was to explore how undergraduate engineering students describe themselves as smart enough to be engineers. We aimed to develop rich descriptions of the complex ways they articulate their identities as smart before coming to college and during the first two years of their undergraduate degrees. Design/MethodWe collected data through a series of interviews with 25 participants. We iteratively and collaboratively analyzed the data to determine the predominant ways the participants articulated their identities as smart enough to be engineers. We generated a qualitative data display to check for patterns related to pathways into engineering programs and privileged social identities. ResultsWe found that engineering students have three different ways to articulate that they are smart enough to be engineers: (1) they have innate abilities, (2) they are hardworking and dedicated to learning, and (3) they have skills and experience related to engineering. Additionally, we provide qualitative evidence that the innate abilities articulation relates to privilege. Discussion/ConclusionThe study participants engaged in identity work that produced the three articulations. As engineering educators, we need to take responsibility for the ways in which our participation in the cultural practice of smartness reproduces inequity.more » « less
-
Contribution: This study examined the role of the engineering and smartness identities of three women as they made decisions about their participation in engineering majors. In addressing the under-representation of women in engineering, particularly in electrical engineering and computer science fields where they have been extremely under-represented, it is important to consider engineering identity as it has been shown to be an important component of major selection and persistence. Background: Smartness is inextricably linked to engineering and prior work has shown that identifying as smart is salient to students who choose engineering majors. However, the relative roles of students’ engineering and smartness identities as they relate to academic decision making and persistence in engineering is not well understood. Research Question: How do engineering identity and smartness identity relate to women’s decisions about choosing engineering majors in the instances of joining engineering, changing engineering major, and leaving engineering? Methodology: Data were collected from a series of three interviews with three different women. Data condensation techniques, including writing participant summary memos and analytic memos, focused on detailing participants’ academic decisions, engineering identity, and smartness identity were used for analysis. Data visualization was used to map the women’s engineering identity and smartness identity to their academic decisions related to their majors. Findings: The findings indicate the participants’ smartness identity was salient in the initial decision to matriculate into engineering, both their engineering and smartness identities remained stable as they persisted in or left engineering. And reveal complex interactions between these identities and decision making.more » « less
-
Common discourse conveys that to be an engineer, one must be “smart.” Our individual and collective beliefs about what constitutes smart behavior are shaped by our participation in the complex cultural practice of smartness. From the literature, we know that the criteria for being considered “smart” in our educational systems are biased. The emphasis on selecting and retaining only those who are deemed “smart enough” to be engineers perpetuates inequity in undergraduate engineering education. Less is known about what undergraduate students explicitly believe are the different ways of being smart in engineering or how those different ways of being a smart engineer are valued in introductory engineering classrooms. In this study, we explored the common beliefs of undergraduate engineering students regarding what it means to be smart in engineering. We also explored how the students personally valued those ways of being smart versus what they perceived as being valued in introductory engineering classrooms. Through our multi-phase, multi-method approach, we initially qualitatively characterized their beliefs into 11 different ways to be smart in engineering, based on a sample of 36 engineering students enrolled in first-year engineering courses. We then employed quantitative methods to uncover significant differences, with a 95% confidence interval, in six of the 11 ways of being smart between the values personally held by engineering students and what they perceived to be valued in their classrooms. Additionally, we qualitatively found that 1) students described grades as central to their classroom experience, 2) students described the classroom as a context where effortless achievement is associated with being smart, and 3) students described a lack of reward in the classroom for showing initiative and for considerations of social impact or helping others. As engineering educators strive to be more inclusive, it is essential to have a clear understanding and reflect on how students value different ways of being smart in engineering as well as consider how these values are embedded into teaching praxis.more » « less
-
Background: Those who participate in engineering are often assumed to be smart by others. At the same time, the cultural construction of what counts as “smart” is biased and therefore functions as a barrier to broadening participation in engineering. While considerable work has been done to understand engineering identity, how students understand themselves as smart is rarely made explicit in engineering identity research. Purpose: This paper is a theoretical discussion which highlights the need for engineering identity research to integrate students’ understanding of themselves as smart. By not incorporating students’ understanding of themselves as smart explicitly in work on engineering identity, we allow the bias in what gets recognized as smart to remain implicit and oppressive. Scope: In this paper, we argue that the idea of smart is very salient in engineering contexts and contributes to inequity. Then, we demonstrate how three different framings of identity allow for the explicit integration of how students are understanding themselves as smart. We also present selected examples from our empirical data to illustrate the concrete ways in which students’ understandings of themselves as smart manifest in an engineering context. Conclusions: We provided explicit opportunities for researchers to integrate students’ understandings of themselves as smart across three different framings of identity and how such understanding has shown up in our empirical research. In doing so, we conclude that making “smart” explicit in engineering identity provides a way to understand the exclusionary nature of engineering, and a new lens to apply when considering efforts to broaden participation in engineering.more » « less
-
Our world’s complex challenges increase the need for those entering STEAM (Science, Technology, Engineering, Arts, and Math) disciplines to be able to creatively approach and collaboratively address wicked problems – complex problems with no “right” answer that span disciplines. Hackathons are environments that leverage problem-based learning practices so student teams can solve problems creatively and collaboratively by developing a solution to given challenges using engineering and computer science knowledge, skills, and abilities. The purpose of this paper is to offer a framework for interdisciplinary hackathon challenge development, as well as provide resources to aid interdisciplinary teams in better understanding the context and needs of a hackathon to evaluate and refine hackathon challenges. Three cohorts of interdisciplinary STEAM researchers were observed and interviewed as they collaboratively created a hackathon challenge incorporating all cohort-member disciplines for an online high school hackathon. The observation data and interview transcripts were analyzed using thematic analysis to distill the processes cohorts underwent and resources that were necessary for successfully creating a hackathon challenge. Through this research we found that the cohorts worked through four sequential stages as they collaborated to create a hackathon challenge. We detail the stages and offer them as a framework for future teams who seek to develop an interdisciplinary hackathon challenge. Additionally, we found that all cohorts lacked the knowledge and experience with hackathons to make fully informed decisions related to the challenge’s topic, scope, outcomes, etc. In response, this manuscript offers five hackathon quality considerations and three guiding principles for challenge developers to best meet the needs and goals of hackathon sponsors and participants.more » « less
-
This paper proposes the use of collaborative secondary data analysis (SDA) as a tool for building capacity in engineering education research. We first characterise the value of collaborative SDA as a tool to help emerging researchers develop skills in qualitative data analysis. We then describe an ongoing collaboration that involves a series of workshops as well as two pilot projects that seek to develop and test frameworks and practices for SDA in engineering education research. We identify emerging benefits and practical challenges associated with implementing SDA as a capacity building tool, and conclude with a discussion of future work.more » « less