- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Anupriya, Edappalil Satheesan (1)
-
Chen, Ran (1)
-
Kalski, Daniel (1)
-
Palmer, Jordynn (1)
-
Shen, Mei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present here a dual-channel nanoelectrode to detect both redox-active and non-redox-active analytes. The dual-channel nanoelectrode was developed from theta nanopipette. We developed one channel of the theta nanopipette to be a carbon nanoelectrode and the other channel to be a nano interface between two immiscible electrolyte solutions (nanoITIES) electrode, producing a nano-carbon-ITIES platform. The carbon nanoelectrode channel was developed by carbon deposition via pyrolysis followed by focused ion beam milling to measure redox-active analytes. The nanoITIES electrode channel was developed to detect non-redox-active analytes. The nano-carbon-ITIES electrodes were characterized using electrochemistry, scanning electron microscopy and transmission electron microscopy. Dopamine (a redox-active analyte) and acetylcholine (a non-redox-active analyte) were measured on the dualchannel nano-carbon-ITIES platform using the carbon nanoelectrode and the nanoITIES electrode, respectively. Using cyclic voltammetry, the diffusion-limited current of dopamine and acetylcholine detection on the nano-carbon-ITIES electrode increased linearly with increasing their concentrations. Using chronoamperometry (current versus time), we showed that the nano-carbon-ITIES electrode detected acetylcholine and dopamine at the same time. The introduced first-ever dual-functional nanocarbon- ITIES electrodes expand the current literature in multi-channel electrodes for multi-purpose analysis, which is an emerging area of research. Developing the analytical capability for the simultaneous detection of acetylcholine and dopamine is a critical step towards understanding diseases and disorders where both dopamine and acetylcholine are involved.more » « less
An official website of the United States government
