skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kamburugamuve, Supun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The data engineering and data science community has embraced the idea of using Python and R dataframes for regular applications. Driven by the big data revolution and artificial intelligence, these frameworks are now ever more important in order to process terabytes of data. They can easily exceed the capabilities of a single machine but also demand significant developer time and effort due to their convenience and ability to manipulate data with high-level abstractions that can be optimized. Therefore it is essential to design scalable dataframe solutions. There have been multiple efforts to be integrated into the most efficient fashion to tackle this problem, the most notable being the dataframe systems developed using distributed computing environments such as Dask and Ray. Even though Dask and Ray's distributed computing features look very promising, we perceive that the Dask Dataframes and Ray Datasets still have room for optimization In this paper, we present CylonFlow, an alternative distributed dataframe execution methodology that enables state-of-the-art performance and scalability on the same Dask and Ray infrastructure (superchargingthem!). To achieve this, we integrate ahigh-performance dataframesystem Cylon, which was originally based on an entirely different execution paradigm, into Dask and Ray. Our experiments show that on a pipeline of dataframe operators, CylonFlow achieves 30 × more distributed performance than Dask Dataframes. Interestingly, it also enables superior sequential performance due to leveraging the native C++ execution of Cylon. We believe the performance of Cylon in conjunction with CylonFlow extends beyond the data engineering domain and can be used to consolidate high-performance computing and distributed computing ecosystems.

     
    more » « less
    Free, publicly-accessible full text available July 12, 2025
  2. Data-intensive applications are becoming commonplace in all science disciplines. They are comprised of a rich set of sub-domains such as data engineering, deep learning, and machine learning. These applications are built around efficient data abstractions and operators that suit the applications of different domains. Often lack of a clear definition of data structures and operators in the field has led to other implementations that do not work well together. The HPTMT architecture that we proposed recently, identifies a set of data structures, operators, and an execution model for creating rich data applications that links all aspects of data engineering and data science together efficiently. This paper elaborates and illustrates this architecture using an end-to-end application with deep learning and data engineering parts working together. Our analysis show that the proposed system architecture is better suited for high performance computing environments compared to the current big data processing systems. Furthermore our proposed system emphasizes the importance of efficient compact data structures such as Apache Arrow tabular data representation defined for high performance. Thus the system integration we proposed scales a sequential computation to a distributed computation retaining optimum performance along with highly usable application programming interface. 
    more » « less
  3. null (Ed.)
    Data engineering is becoming an increasingly important part of scientific discoveries with the adoption of deep learning and machine learning. Data engineering deals with a variety of data formats, storage, data extraction, transformation, and data movements. One goal of data engineering is to transform data from original data to vector/matrix/tensor formats accepted by deep learning and machine learning applications. There are many structures such as tables, graphs, and trees to represent data in these data engineering phases. Among them, tables are a versatile and commonly used format to load and process data. In this paper, we present a distributed Python API based on table abstraction for representing and processing data. Unlike existing state-of-the-art data engineering tools written purely in Python, our solution adopts high performance compute kernels in C++, with an in-memory table representation with Cython-based Python bindings. In the core system, we use MPI for distributed memory computations with a data-parallel approach for processing large datasets in HPC clusters. 
    more » « less
  4. null (Ed.)
    The amazing advances being made in the fields of machine and deep learning are a highlight of the Big Data era for both enterprise and research communities. Modern applications require resources beyond a single node's ability to provide. However this is just a small part of the issues facing the overall data processing environment, which must also support a raft of data engineering for pre- and post-data processing, communication, and system integration. An important requirement of data analytics tools is to be able to easily integrate with existing frameworks in a multitude of languages, thereby increasing user productivity and efficiency. All this demands an efficient and highly distributed integrated approach for data processing, yet many of today's popular data analytics tools are unable to satisfy all these requirements at the same time. In this paper we present Cylon, an open-source high performance distributed data processing library that can be seamlessly integrated with existing Big Data and AI/ML frameworks. It is developed with a flexible C++ core on top of a compact data structure and exposes language bindings to C++, Java, and Python. We discuss Cylon's architecture in detail, and reveal how it can be imported as a library to existing applications or operate as a standalone framework. Initial experiments show that Cylon enhances popular tools such as Apache Spark and Dask with major performance improvements for key operations and better component linkages. Finally, we show how its design enables Cylon to be used cross-platform with minimum overhead, which includes popular AI tools such as PyTorch, Tensorflow, and Jupyter notebooks. 
    more » « less
  5. Abstract

    Twister2 is an open‐source big data hosting environment designed to process both batch and streaming data at scale. Twister2 runs jobs in both high‐performance computing (HPC) and big data clusters. It provides a cross‐platform resource scheduler to run jobs in diverse environments. Twister2 is designed with a layered architecture to support various clusters and big data problems. In this paper, we present the cross‐platform resource scheduler of Twister2. We identify required services and explain implementation details. We present job startup delays for single jobs and multiple concurrent jobs in Kubernetes and OpenMPI clusters. We compare job startup delays for Twister2 and Spark at a Kubernetes cluster. In addition, we compare the performance of terasort algorithm on Kubernetes and bare metal clusters at AWS cloud.

     
    more » « less
  6. Summary

    Data‐driven applications are essential to handle the ever‐increasing volume, velocity, and veracity of data generated by sources such as the Web and Internet of Things (IoT) devices. Simultaneously, an event‐driven computational paradigm is emerging as the core of modern systems designed for database queries, data analytics, and on‐demand applications. Modern big data processing runtimes and asynchronous many task (AMT) systems from high performance computing (HPC) community have adopted dataflow event‐driven model. The services are increasingly moving to an event‐driven model in the form of Function as a Service (FaaS) to compose services. An event‐driven runtime designed for data processing consists of well‐understood components such as communication, scheduling, and fault tolerance. Different design choices adopted by these components determine the type of applications a system can support efficiently. We find that modern systems are limited to specific sets of applications because they have been designed with fixed choices that cannot be changed easily. In this paper, we present a loosely coupled component‐based design of a big data toolkit where each component can have different implementations to support various applications. Such a polymorphic design would allow services and data analytics to be integrated seamlessly and expand from edge to cloud to HPC environments.

     
    more » « less