Managing and preparing complex data for deep learning, a prevalent approach in large-scale data science can be challenging. Data transfer for model training also presents difficulties, impacting scientific fields like genomics, climate modeling, and astronomy. A large-scale solution like Google Pathways with a distributed execution environment for deep learning models exists but is proprietary. Integrating existing open-source, scalable runtime tools and data frameworks on high-performance computing (HPC) platforms is crucial to address these challenges. Our objective is to establish a smooth and unified method of combining data engineering and deep learning frameworks with diverse execution capabilities that can be deployed on various high-performance computing platforms, including cloud and supercomputers. We aim to support heterogeneous systems with accelerators, where Cylon and other data engineering and deep learning frameworks can utilize heterogeneous execution. To achieve this, we propose Radical-Cylon, a heterogeneous runtime system with a parallel and distributed data framework to execute Cylon as a task of Radical Pilot. We thoroughly explain Radical-Cylon’s design and development and the execution process of Cylon tasks using Radical Pilot. This approach enables the use of heterogeneous MPI-Communicators across multiple nodes. Radical-Cylon achieves better performance than Bare-Metal Cylon with minimal and constant overhead. Radical-Cylon achieves (4 15)% faster execution time than batch execution while performing similar join and sort operations with 35 million and 3.5 billion rows with the same resources. The approach aims to excel in both scientific and engineering research HPC systems while demonstrating robust performance on cloud infrastructures. This dual capability fosters collaboration and innovation within the open-source scientific research community.Not Available
more »
« less
Supercharging distributed computing environments for high-performance data engineering
The data engineering and data science community has embraced the idea of using Python and R dataframes for regular applications. Driven by the big data revolution and artificial intelligence, these frameworks are now ever more important in order to process terabytes of data. They can easily exceed the capabilities of a single machine but also demand significant developer time and effort due to their convenience and ability to manipulate data with high-level abstractions that can be optimized. Therefore it is essential to design scalable dataframe solutions. There have been multiple efforts to be integrated into the most efficient fashion to tackle this problem, the most notable being the dataframe systems developed using distributed computing environments such as Dask and Ray. Even though Dask and Ray's distributed computing features look very promising, we perceive that the Dask Dataframes and Ray Datasets still have room for optimization In this paper, we present CylonFlow, an alternative distributed dataframe execution methodology that enables state-of-the-art performance and scalability on the same Dask and Ray infrastructure (superchargingthem!). To achieve this, we integrate ahigh-performance dataframesystem Cylon, which was originally based on an entirely different execution paradigm, into Dask and Ray. Our experiments show that on a pipeline of dataframe operators, CylonFlow achieves 30 × more distributed performance than Dask Dataframes. Interestingly, it also enables superior sequential performance due to leveraging the native C++ execution of Cylon. We believe the performance of Cylon in conjunction with CylonFlow extends beyond the data engineering domain and can be used to consolidate high-performance computing and distributed computing ecosystems.
more »
« less
- Award ID(s):
- 2210266
- PAR ID:
- 10552193
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in High Performance Computing
- Volume:
- 2
- ISSN:
- 2813-7337
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dataframes have become universally popular as a means to represent data in various stages of structure, and manipulate it using a rich set of operators---thereby becoming an essential tool in the data scientists' toolbox. However, dataframe systems, such as pandas, scale poorly---and are non-interactive on moderate to large datasets. We discuss our experiences developing Modin, our first cut at a parallel dataframe system, which already has users across several industries and over 1M downloads. Modin translates pandas functions into a core set of operators that are individually parallelized via columnar, row-wise, or cell-wise decomposition rules that we formalize in this paper. We also introduce metadata independence to allow metadata---such as order and type---to be decoupled from the physical representation and maintained lazily. Using rule-based decomposition and metadata independence, along with careful engineering, Modin is able to support pandas operations across both rows and columns on very large dataframes---unlike Koalas and Dask DataFrames that either break down or are unable to support such operations, while also being much faster than pandas.more » « less
-
null (Ed.)The amazing advances being made in the fields of machine and deep learning are a highlight of the Big Data era for both enterprise and research communities. Modern applications require resources beyond a single node's ability to provide. However this is just a small part of the issues facing the overall data processing environment, which must also support a raft of data engineering for pre- and post-data processing, communication, and system integration. An important requirement of data analytics tools is to be able to easily integrate with existing frameworks in a multitude of languages, thereby increasing user productivity and efficiency. All this demands an efficient and highly distributed integrated approach for data processing, yet many of today's popular data analytics tools are unable to satisfy all these requirements at the same time. In this paper we present Cylon, an open-source high performance distributed data processing library that can be seamlessly integrated with existing Big Data and AI/ML frameworks. It is developed with a flexible C++ core on top of a compact data structure and exposes language bindings to C++, Java, and Python. We discuss Cylon's architecture in detail, and reveal how it can be imported as a library to existing applications or operate as a standalone framework. Initial experiments show that Cylon enhances popular tools such as Apache Spark and Dask with major performance improvements for key operations and better component linkages. Finally, we show how its design enables Cylon to be used cross-platform with minimum overhead, which includes popular AI tools such as PyTorch, Tensorflow, and Jupyter notebooks.more » « less
-
Significant obstacles exist in scientific domains including genetics, climate modeling, and astronomy due to the management, preprocess, and training on complicated data for deep learning. Even while several large-scale solutions offer distributed execution environments, open-source alternatives that integrate scalable runtime tools, deep learning and data frameworks on high-performance computing platforms remain crucial for accessibility and flexibility. In this paper, we introduce Deep Radical-Cylon(RC), a heterogeneous runtime system that combines data engineering, deep learning frameworks, and workflow engines across several HPC environments, including cloud and supercomputing infrastructures. Deep RC supports heterogeneous systems with accelerators, allows the usage of communication libraries like MPI, GLOO and NCCL across multi-node setups, and facilitates parallel and distributed deep learning pipelines by utilizing Radical Pilot as a task execution framework. By attaining an end-to-end pipeline including preprocessing, model training, and postprocessing with 11 neural forecasting models (PyTorch) and hydrology models (TensorFlow) under identical resource conditions, the system reduces 3.28 and 75.9 seconds, respectively. The design of Deep RC guarantees the smooth integration of scalable data frameworks, such as Cylon, with deep learning processes, exhibiting strong performance on cloud platforms and scientific HPC systems. By offering a flexible, high-performance solution for resource-intensive applications, this method closes the gap between data preprocessing, model training, and postprocessing.more » « less
-
Significant obstacles exist in scientific domains including genetics, climate modeling, and astronomy due to the management, preprocess, and training on complicated data for deep learning. Even while several large-scale solutions offer distributed execution environments, open-source alternatives that integrate scalable runtime tools, deep learning and data frameworks on high-performance computing platforms remain crucial for accessibility and flexibility. In this paper, we introduce Deep Radical-Cylon(RC), a heterogeneous runtime system that combines data engineering, deep learning frameworks, and workflow engines across several HPC environments, including cloud and supercomputing infrastructures. Deep RC supports heterogeneous systems with accelerators, allows the usage of communication libraries like \texttt{MPI}, \texttt{GLOO} and \texttt{NCCL} across multi-node setups, and facilitates parallel and distributed deep learning pipelines by utilizing Radical Pilot as a task execution framework. By attaining an end-to-end pipeline including preprocessing, model training, and postprocessing with 11 neural forecasting models (PyTorch) and hydrology models (TensorFlow) under identical resource conditions, the system reduces 3.28 and 75.9 seconds, respectively. The design of Deep RC guarantees the smooth integration of scalable data frameworks, such as Cylon, with deep learning processes, exhibiting strong performance on cloud platforms and scientific HPC systems. By offering a flexible, high-performance solution for resource-intensive applications, this method closes the gap between data preprocessing, model training, and postprocessing.more » « less
An official website of the United States government

