skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kandadai, Nirmala"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Additive manufacturing has become a promising method for the fabrication of inexpensive, green, flexible electronics. Printed electronics on low-temperature substrates like paper are very appealing for the flexible hybrid electronics market for their use in disposable and biocompatible electronic applications and in areas like packaging, wearables, and consumer electronics. Plasma-jet printing uses a dielectric barrier discharge plasma to focus aerosolized nanoparticles onto a target substrate. The same plasma can be used to change the properties of the printed material and even sinter in situ. The technology can also be utilized in space and microgravity environments since the plasma-assisted deposition is independent of gravity. In this work, we show plasma voltage effect on deposition of gold nanoparticles and direct printing of flexible, conductive gold structures onto low-temperature paper substrates without the need for thermal or photonic post-processing. The effects of plasma parameters on the conductivity and flexible reliability of the printed films are studied, and a paper-based LED electrode is demonstrated. 
    more » « less
  2. Plasma jet printing is an emerging alternative to popular 2-D printing techniques, such as inkjet and aerosol jet printing. The inherent nature of the plasma provides films with good adhesion upon printing without the need for thermal sintering. The reduced logistics and the ability to print a wide range of materials on rigid and flexible substrates make it a valuable technique for printed and flexible electronics. In this tutorial article, we discuss the principles behind plasma printing, printer hardware, and printing mechanisms and provide representative print results. 
    more » « less