Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding local loss processes in Earth’s radiation belts is critical to understanding their overall structure. Electromagnetic ion cyclotron waves can cause rapid loss of multi‐MeV electrons in the radiation belts. These loss effects have been observed at a range ofL* values, recently as low asL* = 3.5. Here, we present a case study of an event where a local minimum develops in multi‐MeV electron phase space density (PSD) nearL* = 3.5 and evaluate the possibility of electromagnetic ion cyclotron (EMIC) waves in contributing to the observed loss feature. Signatures of EMIC waves are shown including rapid local loss and pitch angle bite outs. Analysis of the wave power spectral density during the event shows EMIC wave occurrence at higherL* values. Using representative wave parameters, we calculate minimum resonant energies, diffusion coefficients, and simulate the evolution of electron PSD during this event. From these results, we find that O+ band EMIC waves could be contributing to the local loss feature during this event. O+ band EMIC waves are uncommon, but do occur in theseL* ranges, and therefore may be a significant driver of radiation belt dynamics under certain preconditioning of the radiation belts.more » « less
-
Abstract Multi‐MeV electron drift‐periodic flux oscillations observed in Earth's radiation belts indicate radial transport and energization/de‐energization of these radiation belt core populations. Using multi‐year Van Allen Probes observations, a statistical analysis is conducted to understand the characteristics of this phenomenon. The results show that most of these flux oscillations result from resonant interactions with broadband ultralow frequency (ULF) waves and are indicators of ongoing radial diffusion. The occurrence frequency of flux oscillations is higher during high solar wind speed/dynamic pressure and geomagnetically active times; however, a large number of them were still observed under mild to moderate solar wind/geomagnetic conditions. The occurrence frequency is also highest (up to ∼30%) at low L‐shells () under various geomagnetic activity, suggesting the general presence of broadband ULF waves and radial diffusion at low L‐shells even during geomagnetically quiet times and showing the critical role of the electron phase space density radial gradient in forming drift‐periodic flux oscillations.more » « less
-
Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4‐5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long‐lasting, drift‐periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up to ∼7.7 MeV in the outer radiation belt, observed by the Van Allen Probes mission. During this March 2017 event, multi‐MeV electron flux oscillations at the electron drift frequency appeared coincidently with enhanced Pc5 ULF wave activity and lasted for over 10 h in the center of the outer belt. The amplitude of such flux oscillations is well correlated with the radial gradient of electron phase space density (PSD), with almost no oscillation observed near the PSD peak. The temporal evolution of the PSD radial profile also suggests the dominant role of radial diffusion in multi‐MeV electron dynamics during this event. By combining these observations, we conclude that these multi‐MeV electron flux oscillations are caused by the resonant interactions between electrons and broadband Pc5 ULF waves and are an indicator of the ongoing radial diffusion process during this event. They contain essential information of radial diffusion and have the potential to be further used to quantify the radial diffusion effects and aid in a better understanding of this prevailing mechanism.more » « less