skip to main content

Search for: All records

Creators/Authors contains: "Kang, Jian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph is a ubiquitous type of data that appears in many real-world applications, including social network analysis, recommendations and financial security. Important as it is, decades of research have developed plentiful computational models to mine graphs. Despite its prosperity, concerns with respect to the potential algorithmic discrimination have been grown recently. Algorithmic fairness on graphs, which aims to mitigate bias introduced or amplified during the graph mining process, is an attractive yet challenging research topic. The first challenge corresponds to the theoretical challenge, where the non-IID nature of graph data may not only invalidate the basic assumption behind many existing studies in fair machine learning, but also introduce new fairness definition(s) based on the inter-correlation between nodes rather than the existing fairness definition(s) in fair machine learning. The second challenge regarding its algorithmic aspect aims to understand how to balance the trade-off between model accuracy and fairness. This tutorial aims to (1) comprehensively review the state-of-the-art techniques to enforce algorithmic fairness on graphs and (2) enlighten the open challenges and future directions. We believe this tutorial could benefit researchers and practitioners from the areas of data mining, artificial intelligence and social science.
    Free, publicly-accessible full text available August 14, 2023
  2. Graph Convolutional Network (GCN) has exhibited strong empirical performance in many real-world applications. The vast majority of existing works on GCN primarily focus on the accuracy while ignoring how confident or uncertain a GCN is with respect to its predictions. Despite being a cornerstone of trustworthy graph mining, uncertainty quantification on GCN has not been well studied and the scarce existing efforts either fail to provide deterministic quantification or have to change the training procedure of GCN by introducing additional parameters or architectures. In this paper, we propose the first frequentist-based approach named JuryGCN in quantifying the uncertainty of GCN, where the key idea is to quantify the uncertainty of a node as the width of confidence interval by a jackknife estimator. Moreover, we leverage the influence functions to estimate the change in GCN parameters without re-training to scale up the computation. The proposed JuryGCN is capable of quantifying uncertainty deterministically without modifying the GCN architecture or introducing additional parameters. We perform extensive experimental evaluation on real-world datasets in the tasks of both active learning and semi-supervised node classification, which demonstrate the efficacy of the proposed method.
    Free, publicly-accessible full text available August 14, 2023
  3. Graph Convolutional Network (GCN) plays pivotal roles in many real-world applications. Despite the successes of GCN deployment, GCN often exhibits performance disparity with respect to node de- grees, resulting in worse predictive accuracy for low-degree nodes. We formulate the problem of mitigating the degree-related per- formance disparity in GCN from the perspective of the Rawlsian difference principle, which is originated from the theory of distribu- tive justice. Mathematically, we aim to balance the utility between low-degree nodes and high-degree nodes while minimizing the task- specific loss. Specifically, we reveal the root cause of this degree- related unfairness by analyzing the gradients of weight matrices in GCN. Guided by the gradients of weight matrices, we further propose a pre-processing method RawlsGCN-Graph and an in- processing method RawlsGCN-Grad that achieves fair predictive accuracy in low-degree nodes without modification on the GCN architecture or introduction of additional parameters. Extensive experiments on real-world graphs demonstrate the effectiveness of our proposed RawlsGCN methods in significantly reducing degree- related bias while retaining comparable overall performance.
    Free, publicly-accessible full text available April 25, 2023
  4. In today’s increasingly connected world, graph mining plays a piv- otal role in many real-world application domains, including social network analysis, recommendations, marketing and financial secu- rity. Tremendous efforts have been made to develop a wide range of computational models. However, recent studies have revealed that many widely-applied graph mining models could suffer from potential discrimination. Fairness on graph mining aims to develop strategies in order to mitigate bias introduced/amplified during the mining process. The unique challenges of enforcing fairness on graph mining include (1) theoretical challenge on non-IID nature of graph data, which may invalidate the basic assumption behind many existing studies in fair machine learning, and (2) algorith- mic challenge on the dilemma of balancing model accuracy and fairness. This tutorial aims to (1) present a comprehensive review of state-of-the-art techniques in fairness on graph mining and (2) identify the open challenges and future trends. In particular, we start with reviewing the background, problem definitions, unique challenges and related problems; then we will focus on an in-depth overview of (1) recent techniques in enforcing group fairness, indi- vidual fairness and other fairness notions in the context of graph mining, and (2) future directions in studying algorithmic fairness onmore »graphs. We believe this tutorial could be attractive to researchers and practitioners in areas including data mining, artificial intel- ligence, social science and beneficial to a plethora of real-world application domains.« less
  5. Graph mining is an essential component of recommender systems and search engines. Outputs of graph mining models typically provide a ranked list sorted by each item's relevance or utility. However, recent research has identified issues of algorithmic bias in such models, and new graph mining algorithms have been proposed to correct for bias. As such, algorithm developers need tools that can help them uncover potential biases in their models while also exploring the impacts of correcting for biases when employing fairness-aware algorithms. In this paper, we present FairRankVis, a visual analytics framework designed to enable the exploration of multi-class bias in graph mining algorithms. We support both group and individual fairness levels of comparison. Our framework is designed to enable model developers to compare multi-class fairness between algorithms (for example, comparing PageRank with a debiased PageRank algorithm) to assess the impacts of algorithmic debiasing with respect to group and individual fairness. We demonstrate our framework through two usage scenarios inspecting algorithmic fairness.
  6. Abstract Magic-angle twisted bilayer graphene has recently become a thriving material platform realizing correlated electron phenomena taking place within its topological flat bands. Several numerical and analytical methods have been applied to understand the correlated phases therein, revealing some similarity with the quantum Hall physics. In this work, we provide a Mott-Hubbard perspective for the TBG system. Employing the large-scale density matrix renormalization group on the lattice model containing the projected Coulomb interactions only, we identify a first-order quantum phase transition between the insulating stripe phase and the quantum anomalous Hall state with the Chern number of ±1. Our results not only shed light on the mechanism of the quantum anomalous Hall state discovered at three-quarters filling, but also provide an example of the topological Mott insulator, i.e., the quantum anomalous Hall state in the strong coupling limit.
  7. Recent years have witnessed the pivotal role of Graph Neural Networks (GNNs) in various high-stake decision-making scenarios due to their superior learning capability. Close on the heels of the successful adoption of GNNs in different application domains has been the increasing societal concern that conventional GNNs often do not have fairness considerations. Although some research progress has been made to improve the fairness of GNNs, these works mainly focus on the notion of group fairness regarding different subgroups defined by a protected attribute such as gender, age, and race. Beyond that, it is also essential to study the GNN fairness at a much finer granularity (i.e., at the node level) to ensure that GNNs render similar prediction results for similar individuals to achieve the notion of individual fairness. Toward this goal, in this paper, we make an initial investigation to enhance the individual fairness of GNNs and propose a novel ranking based framework---REDRESS. Specifically, we refine the notion of individual fairness from a ranking perspective, and formulate the ranking based individual fairness promotion problem. This naturally addresses the issue of Lipschitz constant specification and distance calibration resulted from the Lipschitz condition in the conventional individual fairness definition. Our proposed frameworkmore »REDRESS encapsulates the GNN model utility maximization and the ranking-based individual fairness promotion in a joint framework to enable end-to-end training. It is noteworthy mentioning that REDRESS is a plug-and-play framework and can be easily generalized to any prevalent GNN architectures. Extensive experiments on multiple real-world graphs demonstrate the superiority of REDRESS in achieving a good balance between model utility maximization and individual fairness promotion. Our open source code can be found here:« less