- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kang, Pilgyu (3)
-
Nam, SungWoo (3)
-
Haque, Md Farhadul (2)
-
Leem, Juyoung (2)
-
Aluru, Narayana R. (1)
-
Cho, Chullhee (1)
-
Choi, Jonghyun (1)
-
Jing, Yuhang (1)
-
Kang, Daeshik (1)
-
Kim, Hong Nam (1)
-
Kim, Jin Myung (1)
-
Kim, Junghoon (1)
-
Snapp, Peter (1)
-
Taqieddin, Amir (1)
-
Yong, Keong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kim, Junghoon; Leem, Juyoung; Kim, Hong Nam; Kang, Pilgyu; Choi, Jonghyun; Haque, Md Farhadul; Kang, Daeshik; Nam, SungWoo (, Microsystems & Nanoengineering)Abstract Graphene, owing to its inherent chemical inertness, biocompatibility, and mechanical flexibility, has great potential in guiding cell behaviors such as adhesion and differentiation. However, due to the two-dimensional (2D) nature of graphene, the microfabrication of graphene into micro/nanoscale patterns has been widely adopted for guiding cellular assembly. In this study, we report crumpled graphene, i.e., monolithically defined graphene with a nanoscale wavy surface texture, as a tissue engineering platform that can efficiently promote aligned C2C12 mouse myoblast cell differentiation. We imparted out-of-plane, nanoscale crumpled morphologies to flat graphene via compressive strain-induced deformation. When C2C12 mouse myoblast cells were seeded on the uniaxially crumpled graphene, not only were the alignment and elongation promoted at a single-cell level but also the differentiation and maturation of myotubes were enhanced compared to that on flat graphene. These results demonstrate the utility of the crumpled graphene platform for tissue engineering and regenerative medicine for skeletal muscle tissues.more » « less
-
Snapp, Peter; Kang, Pilgyu; Leem, Juyoung; Nam, SungWoo (, Advanced Functional Materials)Abstract Flexible, architectured, photonic nanostructures such as colloidal photonic crystals (CPCs) can serve as colorimetric strain sensors, where external applied strain leads to a noticeable color change. However, CPCs' response to strain is difficult to quantify without the use of optical spectroscopy. Integration of flexible electrical readout of CPCs' color change is a challenge due to a lack of flexible/stretchable electrical transducers. This work details a colorimetric strain sensor with optoelectrical quantification based on an integrated system of CPCs over a crumpled graphene phototransducer, which optoelectrically quantifies CPCs, response to strain. The hybrid system enables direct visual perception of strain, while strain quantification via electrical measurement of the hybrid system outperforms that of crumpled graphene strain sensors by more than 100 times. The unique combination of a photonic sensing element with a deformable transducer will allow for the development of novel, electrically quantifiable colorimetric sensors with high sensitivity.more » « less
An official website of the United States government
