skip to main content


Search for: All records

Creators/Authors contains: "Kang, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a novel inference approach that we call sample out-of-sample inference. The approach can be used widely, ranging from semisupervised learning to stress testing, and it is fundamental in the application of data-driven distributionally robust optimization. Our method enables measuring the impact of plausible out-of-sample scenarios in a given performance measure of interest, such as a financial loss. The methodology is inspired by empirical likelihood (EL), but we optimize the empirical Wasserstein distance (instead of the empirical likelihood) induced by observations. From a methodological standpoint, our analysis of the asymptotic behavior of the induced Wasserstein-distance profile function shows dramatic qualitative differences relative to EL. For instance, in contrast to EL, which typically yields chi-squared weak convergence limits, our asymptotic distributions are often not chi-squared. Also, the rates of convergence that we obtain have some dependence on the dimension in a nontrivial way but remain controlled as the dimension increases. 
    more » « less
  2. Distributionally Robust Optimization (DRO) has been shown to provide a flexible framework for decision making under uncertainty and statistical estimation. For example, recent works in DRO have shown that popular statistical estimators can be interpreted as the solutions of suitable formulated data-driven DRO problems. In turn, this connection is used to optimally select tuning parameters in terms of a principled approach informed by robustness considerations. This paper contributes to this growing literature, connecting DRO and statistics, by showing how boosting algorithms can be studied via DRO. We propose a boosting type algorithm, named DRO-Boosting, as a procedure to solve our DRO formulation. Our DRO-Boosting algorithm recovers Adaptive Boosting (AdaBoost) in particular, thus showing that AdaBoost is effectively solving a DRO problem. We apply our algorithm to a financial dataset on credit card default payment prediction. Our approach compares favorably to alternative boosting methods which are widely used in practice. 
    more » « less
  3. Some recent works showed that several machine learning algorithms, such as square-root Lasso, Support Vector Machines, and regularized logistic regression, among many others, can be represented exactly as distributionally robust optimization (DRO) problems. The distributional uncertainty set is defined as a neighborhood centered at the empirical distribution, and the neighborhood is measured by optimal transport distance. In this paper, we propose a methodology which learns such neighborhood in a natural data-driven way. We show rigorously that our framework encompasses adaptive regularization as a particular case. Moreover, we demonstrate empirically that our proposed methodology is able to improve upon a wide range of popular machine learning estimators. 
    more » « less
  4. Abstract We show that several machine learning estimators, including square-root least absolute shrinkage and selection and regularized logistic regression, can be represented as solutions to distributionally robust optimization problems. The associated uncertainty regions are based on suitably defined Wasserstein distances. Hence, our representations allow us to view regularization as a result of introducing an artificial adversary that perturbs the empirical distribution to account for out-of-sample effects in loss estimation. In addition, we introduce RWPI (robust Wasserstein profile inference), a novel inference methodology which extends the use of methods inspired by empirical likelihood to the setting of optimal transport costs (of which Wasserstein distances are a particular case). We use RWPI to show how to optimally select the size of uncertainty regions, and as a consequence we are able to choose regularization parameters for these machine learning estimators without the use of cross validation. Numerical experiments are also given to validate our theoretical findings. 
    more » « less