skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kanigowski, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We construct a smooth area preserving flow on a genus 2 surface with exactly one open uniquely ergodic component, that is asymmetrically bounded by separatrices of non-degenerate saddles and that is nevertheless not mixing. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. We construct conservative smooth flows of zero metric entropy which satisfy the classical central limit theorem. 
    more » « less
  3. We study the spectral measures of conservative mixing flows on the 2 2 -torus having one degenerate singularity. We show that, for a sufficiently strong singularity, the spectrum of these flows is typically Lebesgue with infinite multiplicity. For this, we use two main ingredients: (1) a proof of absolute continuity of the maximal spectral type for this class of non-uniformly stretching flows that have an irregular decay of correlations, (2) a geometric criterion that yields infinite Lebesgue multiplicity of the spectrum and that is well adapted to rapidly mixing flows. 
    more » « less