skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Kaplinghat, Manoj"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Semi-analytic modelling furnishes an efficient avenue for characterizing dark matter haloes associated with satellites of Milky Way-like systems, as it easily accounts for uncertainties arising from halo-to-halo variance, the orbital disruption of satellites, baryonic feedback, and the stellar-to-halo mass (SMHM) relation. We use the SatGen semi-analytic satellite generator, which incorporates both empirical models of the galaxy–halo connection as well as analytic prescriptions for the orbital evolution of these satellites after accretion onto a host to create large samples of Milky Way-like systems and their satellites. By selecting satellites in the sample that match observed properties of a particular dwarf galaxy, we can infer arbitrary properties of the satellite galaxy within the cold dark matter paradigm. For the Milky Way’s classical dwarfs, we provide inferred values (with associated uncertainties) for the maximum circular velocity $$v_\text{max}$$ and the radius $$r_\text{max}$$ at which it occurs, varying over two choices of baryonic feedback model and two prescriptions for the SMHM relation. While simple empirical scaling relations can recover the median inferred value for $$v_\text{max}$$ and $$r_\text{max}$$, this approach provides realistic correlated uncertainties and aids interpretability. We also demonstrate how the internal properties of a satellite’s dark matter profile correlate with its orbit, and we show that it is difficult to reproduce observations of the Fornax dwarf without strong baryonic feedback. The technique developed in this work is flexible in its application of observational data and can leverage arbitrary information about the satellite galaxies to make inferences about their dark matter haloes and population statistics. 
    more » « less
  2. Abstract We study the evolution of isolated self-interacting dark matter (SIDM) halos that undergo gravothermal collapse and are driven deep into the short-mean-free-path regime.We assume spherical Navarro-Frenk-White (NFW) halos as initial conditions and allow for elastic dark matter self-interactions.We discuss the structure of the halo core deep in the core-collapsed regime and how it depends on the particle physics properties of dark matter, in particular, the velocity dependence of the self-interaction cross section. We find an approximate universality deep in this regime that allows us to connect the evolution in the short- and long-mean-free-path regimes, and approximately map the velocity-dependent self-interaction cross sections to constant ones for the full gravothermal evolution. We provide a semi-analytic prescription based on our numerical results for halo evolution deep in the core-collapsed regime.Our results are essential for estimating the masses of the black holes that are likely to be left in the core of SIDM halos. 
    more » « less
  3. ABSTRACT The gamma-ray Fermi-LAT Galactic Centre excess (GCE) has puzzled scientists for over 15 yr. Despite ongoing debates about its properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology – potentially arising from the annihilation of dark matter (DM) particles – with a boxy morphology – expected if faint unresolved sources in the Galactic bulge dominate the excess emission. Recent claims favouring a DM-motivated template for the GCE are shown to rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea survey results in a significantly better fit for the GCE than DM-motivated templates. This result is independent of whether a galprop-based model or a more non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when additional freedom is added in the background models, allowing for non-parametric modulation of the model components and substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane. 
    more » « less
  4. ABSTRACT We study the evolution of isolated self-interacting dark matter halos using spherically symmetric gravothermal equations allowing for the scattering cross-section to be velocity dependent. We focus our attention on the large class of models where the core is in the long mean free path regime for a substantial time. We find that the temporal evolution exhibits an approximate universality that allows velocity-dependent models to be mapped onto velocity-independent models in a well-defined way using the scattering time-scale computed when the halo achieves its minimum central density. We show how this time-scale depends on the halo parameters and an average cross-section computed at the central velocity dispersion when the central density is minimum. The predicted collapse time is fully defined by the scattering time-scale, with negligible variation due to the velocity dependence of the cross-section. We derive new self-similar solutions that provide an analytic understanding of the numerical results. 
    more » « less
  5. ABSTRACT We combine the isothermal Jeans model and the model of adiabatic halo contraction into a semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. The model agrees well with cosmological SIDM simulations over the entire core-forming stage up to the onset of gravothermal core-collapse. Using this model, we show that the halo response to baryons is more diverse in SIDM than in CDM and depends sensitively on galaxy size, a desirable feature in the context of the structural diversity of bright dwarfs. The fast speed of the method facilitates analyses that would be challenging for numerical simulations – notably, we quantify the SIDM halo response as functions of the baryonic properties, on a fine mesh grid spanned by the baryon-to-total-mass ratio, Mb/Mvir, and galaxy compactness, r1/2/Rvir; we show with high statistical precision that for typical Milky-Way-like systems, the SIDM profiles are similar to their CDM counterparts; and we delineate the regime of core-collapse in the Mb/Mvir − r1/2/Rvir space, for a given cross section and concentration. Finally, we compare the isothermal Jeans model with the more sophisticated gravothermal fluid model, and show that the former yields faster core formation and agrees better with cosmological simulations. We attribute the difference to whether the target CDM halo is used as a boundary condition or as the initial condition for the gravothermal evolution, and thus comment on possible improvements of the fluid model. We have made our model publicly available at https://github.com/JiangFangzhou/SIDM. 
    more » « less
  6. ABSTRACT We explore the properties of Milky Way (MW) subhaloes in self-interacting dark matter models for moderate cross-sections of 1–5 cm2 g−1 using high-resolution zoom-in N-body simulations. We include the gravitational potential of a baryonic disc and bulge matched to the MW, which is critical for getting accurate predictions. The predicted number and distribution of subhaloes within the host halo are similar for 1 and 5 cm2 g−1 models, and they agree with observations of MW satellite galaxies only if subhaloes with peak circular velocity over all time >7 km s−1 are able to form galaxies. We do not find distinctive signatures in the pericentre distribution of the subhaloes that could help distinguish the models. Using an analytical model to extend the simulation results, we are able to show that subhaloes in models with cross-sections between 1 and 5 cm2 g−1 are not dense enough to match the densest ultrafaint and classical dwarf spheroidal galaxies in the MW. This motivates exploring velocity-dependent cross-sections with values larger than 5 cm2 g−1 at the velocities relevant for the satellites such that core collapse would occur in some of the ultrafaint and classical dwarf spheroidals. 
    more » « less
  7. Abstract We analyze circular velocity profiles of seven ultradiffuse galaxies (UDGs) that are isolated and gas-rich. Assuming that the dark matter halos of these UDGs have a Navarro–Frenk–White (NFW) density profile or a Read density profile (which allows for constant-density cores), the inferred halo concentrations are systematically lower than the cosmological median, even as low as −0.6 dex (about 5σaway) in some cases. Alternatively, similar fits can be obtained with a density profile that scales roughly as 1/r2for radii larger than a few kiloparsecs. Both solutions require the radius where the halo circular velocity peaks ( R max ) to be much larger than the median expectation. Surprisingly, we find an overabundance of such large- R max halos in the IllustrisTNG dark-matter-only simulations compared to the Gaussian expectation. These halos form late and have higher spins compared to median halos of similar masses. The inner densities of the most extreme among these late-forming halos are higher than their NFW counterparts, leading to a ∼1/r2density profile. However, the two well-resolved UDGs in our sample strongly prefer lower dark matter densities in the center than the simulated ones. Comparing to IllustrisTNG hydrodynamical simulations, we also find a tension in getting both low enough circular velocities and high enough halo mass to accommodate the measurements. Our results indicate that the gas-rich UDGs present a significant challenge for galaxy formation models. 
    more » « less
  8. ABSTRACT The presence of an invisible substructure has previously been detected in the gravitational lens galaxy SDSSJ0946+1006 through its perturbation of the lensed images. Using flexible models for the main halo and the subhalo perturbation, we demonstrate that the subhalo has an extraordinarily high central density and steep density slope. We robustly infer the subhalo’s projected mass within 1 kpc to be ∼2–3.7 × 109 M⊙ at >95 per cent CL for all our lens models, while the average log-slope of the subhalo’s projected density profile over the radial range 0.75–1.25 kpc is constrained to be steeper than isothermal (γ2D ≲ −1). By modeling the subhalo light, we infer a conservative upper bound on its luminosity LV < 1.2 × 108L⊙ at 95 per cent CL that shows that the perturber is dark matter dominated. We analyse lensing galaxy analogues in the Illustris TNG100-1 simulation over many lines of sight, and find hundreds of subhalos that achieve a mass within 1 kpc ≳ 2 × 109M⊙. However, less than 1 per cent of the mock observations yield a log-slope steep enough to be consistent with our lensing models, and they all have stellar masses exceeding that allowed by observations by an order of magnitude or more. We conclude that the presence of such a dark highly concentrated subhalo is unexpected in a Lambda cold dark matter universe. While it remains to be determined whether this tension can be reduced by adding more complexity to the primary lens model, it is not significantly alleviated if the perturber is assumed to be a LOS structure, rather than a subhalo. 
    more » « less