Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report the results of the study of the acoustic and optical phonons in Si-doped AlN thin films grown by metal–organic chemical vapor deposition on sapphire substrates. The Brillouin–Mandelstam and Raman light scattering spectroscopies were used to measure the acoustic and optical phonon frequencies close to the Brillouin zone center. The optical phonon frequencies reveal non-monotonic changes, reflective of the variations in the thin film strain and dislocation densities with the addition of Si dopant atoms. The acoustic phonon velocity decreases monotonically with increasing Si dopant concentration, reducing by ∼300 m/s at the doping level of 3 × 1019 cm−3. The knowledge of the acoustic phonon velocities can be used for the optimization of the ultra-wide bandgap semiconductor heterostructures and for minimizing the thermal boundary resistance of high-power devices.more » « lessFree, publicly-accessible full text available September 30, 2025
-
Free, publicly-accessible full text available June 25, 2025
-
We report the results of the investigation of the acoustic and optical phonons in quasi-two-dimensional antiferromagnetic semiconductors of the transition metal phosphorus trisulfide family with Mn, Fe, Co, Ni, and Cd as metal atoms. The Brillouin–Mandelstam and Raman light scattering spectroscopies were conducted at room temperature to measure the acoustic and optical phonon frequencies close to the Brillouin zone center and the Γ−A high symmetry direction. The absorption and index of refraction were measured in the visible and infrared ranges using the reflectometry technique. We found an intriguing large variation, over ∼28%, in the acoustic phonon group velocities in this group of materials with similar crystal structures. Our data indicate that the full-width-at-half-maximum of the acoustic phonon peaks is strongly affected by the optical properties and the electronic bandgap. The acoustic phonon lifetime extracted for some of the materials was correlated with their thermal properties. The results are important for understanding the layered van der Waals semiconductors and assessing their potential for optoelectronic and spintronic device applications.more » « less
-
One-dimensional (1D) van der Waals (vdW) materials display electronic and magnetic transport properties that make them uniquely suited as interconnect materials and for low-dimensional optoelectronic applications. However, there are only around 700 1D vdW structures in general materials databases, making database curation approaches ineffective for 1D discovery. Here, we utilize machine-learning techniques to discover 1D vdW compositions that have not yet been synthesized. Our techniques go beyond discovery efforts involving elemental substitutions and instead start with a composition space of 4741 binary and 392,342 ternary formulas. We predict up to 3000 binary and 10,000 ternary 1D compounds and further classify them by expected magnetic and electronic properties. Our model identifies MoI3, a material we experimentally confirm to exist with wire-like subcomponents and exotic magnetic properties. More broadly, we find several chalcogen-, halogen-, and pnictogen-containing compounds expected to be synthesizable using chemical vapor deposition and chemical vapor transport.more » « less
-
Abstract The development of cryogenic semiconductor electronics and superconducting quantum computing requires composite materials that can provide both thermal conduction and thermal insulation. We demonstrated that at cryogenic temperatures, the thermal conductivity of graphene composites can be both higher and lower than that of the reference pristine epoxy, depending on the graphene filler loading and temperature. There exists a well-defined cross-over temperature—above it, the thermal conductivity of composites increases with the addition of graphene; below it, the thermal conductivity decreases with the addition of graphene. The counter-intuitive trend was explained by the specificity of heat conduction at low temperatures: graphene fillers can serve as, both, the scattering centers for phonons in the matrix material and as the conduits of heat. We offer a physical model that explains the experimental trends by the increasing effect of the thermal boundary resistance at cryogenic temperatures and the anomalous thermal percolation threshold, which becomes temperature dependent. The obtained results suggest the possibility of using graphene composites for, both, removing the heat and thermally insulating components at cryogenic temperatures—a capability important for quantum computing and cryogenically cooled conventional electronics.more » « less
-
null (Ed.)Recent years have witnessed a much broader use of Brillouin inelastic light-scattering spectroscopy for the investigation of phonons and magnons in novel materials, nanostructures and devices. Driven by the developments in instrumentation and the strong need for accurate knowledge on the energies of elemental excitations, Brillouin–Mandelstam spectroscopy is rapidly becoming an essential technique that is complementary to Raman inelastic light-scattering spectroscopy. We provide an overview of recent progress in the Brillouin light-scattering technique, focusing on the use of this photonic method for the investigation of confined acoustic phonons, phononic metamaterials and magnon propagation and scattering. This Review emphasizes the emerging applications of Brillouin–Mandelstam spectroscopy for phonon-engineered structures and spintronic devices, and concludes with a perspective on future directions.more » « less