skip to main content


Search for: All records

Creators/Authors contains: "Karimi, Mohammadjavad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As part of our efforts to interface late transition metals with Lewis acidic main group fragments, we have decided to investigate gold complexes bearing halogermanes as Z‐type ligands. Toward this end, we have synthesized complexes of general formula [(o‐(Ph2P)C6H4)2(Ph)(X)GeAuCl] (X = F, Cl). Experimental and computational analyses indicate the presence of an Au→Ge interaction in both cases. Chloride abstraction reactions have also been investigated. In the case of X = Cl, double chloride abstraction with AgSbF6affords a putative dication that gradually abstracts fluoride from its counterion. This putative dication is also significantly more active as a catalyst than its monocationic analog in alkyne hydroamination reactions.

     
    more » « less
  2. Abstract

    With the discovery of late transition metal platforms that support clean photoreductive halogen eliminations, we now describe an indazol‐3‐ylidene gold trichloride complex ([7]+) decorated at the 4‐position by a xanthylium unit. This orange complex features a low energy band in the visible part of the spectrum, assigned to the charge transfer excitation of the indazol‐3‐ylidene/xanthylium donor/acceptor dyad. Green‐light irradiation of this complex in the presence of a chlorine trap elicits the clean photoelimination of chlorine radicals, producing the corresponding gold(I) complex. This visible‐light‐induced photoreduction is very efficient, reaching quantum yields close to 10 %. A neutral analog of [7]+featuring an anthryl group rather than a xanthylium unit proved to be perfectly photostable, supporting the importance of the xanthylium‐based photoredox unit present in [7]+.

     
    more » « less
  3. Abstract

    With the discovery of late transition metal platforms that support clean photoreductive halogen eliminations, we now describe an indazol‐3‐ylidene gold trichloride complex ([7]+) decorated at the 4‐position by a xanthylium unit. This orange complex features a low energy band in the visible part of the spectrum, assigned to the charge transfer excitation of the indazol‐3‐ylidene/xanthylium donor/acceptor dyad. Green‐light irradiation of this complex in the presence of a chlorine trap elicits the clean photoelimination of chlorine radicals, producing the corresponding gold(I) complex. This visible‐light‐induced photoreduction is very efficient, reaching quantum yields close to 10 %. A neutral analog of [7]+featuring an anthryl group rather than a xanthylium unit proved to be perfectly photostable, supporting the importance of the xanthylium‐based photoredox unit present in [7]+.

     
    more » « less
  4. Abstract

    Searching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(o‐(Ph2P)C6H4)2GeIVCl2]PtIICl2and [(o‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtIIand GeIII–PtIIIisomers, respectively. Conversion of the GeIV–PtIIisomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIIIisomer point to a ligand arene–Cl.charge‐transfer complex as an intermediate.

     
    more » « less
  5. Abstract

    Searching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(o‐(Ph2P)C6H4)2GeIVCl2]PtIICl2and [(o‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtIIand GeIII–PtIIIisomers, respectively. Conversion of the GeIV–PtIIisomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIIIisomer point to a ligand arene–Cl.charge‐transfer complex as an intermediate.

     
    more » « less