skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Karl, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Islands in oligotrophic oceans act as local sources of nutrients. These nutrients originate from land and from deep oceanic nutrients introduced to the photic zone by tides, currents, and internal waves interacting with island bathymetry. These processes create the island mass effect (IME), in which increased chlorophylla(Chla) is found near islands compared to oceanic waters. The IME has been described via satellite observations, but the effects on phytoplankton community structure are not well documented. From 2013 to 2020, chlorophyll, nutrient, and picoplankton samples were collected from multiple depths on quarterly cruises at two sites south of O'ahu, Hawai'i.Prochlorococcus,Synechococcus, picoeukaryotes, and heterotrophic bacteria were enumerated using flow cytometry. We compared nearshore results to Sta. ALOHA, 100 km from O'ahu. Consistent with the expected IME, Chlaconcentrations were significantly enhanced at both nearshore sites compared to Sta. ALOHA.Prochlorococcusconcentrations increased with greater distance from shore, particularly below 50 m; mixed layer concentrations ofSynechococcusand picoeukaryotes significantly decreased with greater distance from shore, as did concentrations of nitrate and phosphate below the mixed layer. Heterotrophic bacteria concentrations did not show a spatial trend. Carbon‐based biomass estimates of the picoplankton population indicated that the IME‐associated Chlaincreases near the island are likely driven by larger phytoplankton classes. This study describes the IME‐associated shift in the picophytoplankton community distribution, which has implications for nutrient cycling, food web dynamics and fisheries in oligotrophic island ecosystems, and adds to the understanding of spatial heterogeneity in carbon fixation in the ocean. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Industrial activities have increased the supply of iron to the ocean, but the magnitude of anthropogenic input and its ecological consequences are not well-constrained by observations. Across four expeditions to the North Pacific transition zone, we document a repeated supply of isotopically light iron from an atmospheric source in spring, reflecting an estimated 39 ± 9 % anthropogenic contribution to the surface ocean iron budget. Expression of iron-stress genes in metatranscriptomes, and evidence for colimitation of ecosystem productivity by iron and nitrogen, indicates that enhanced iron supply should spur spring phytoplankton blooms, accelerating the seasonal drawdown of nitrate delivered by winter mixing. This effect is consistent with regional trends in satellite ocean color, which show a shorter, more intense spring bloom period, followed by an earlier arrival of oligotrophic conditions in summer. Continued iron emissions may contribute to poleward shifts in transitional marine ecosystems, compounding the anticipated impacts from ocean warming and stratification. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  3. Mesoscale eddies cause deviations from the background physical and biogeochemical states of the oligotrophic oceans, but how these perturbations manifest in microbial ecosystem functioning, such as community macromolecular composition or carbon export, remains poorly characterized. We present comparative lipidomes from communities entrained in two eddies of opposite polarities (cyclone–anticyclone) in the North Pacific Subtropical Gyre (NPSG). A previous work on this two-eddy system has shown differences in particulate inorganic carbon (PIC) and biogenic silica sinking fluxes between the two eddies despite comparable total organic carbon fluxes. We measured the striking differences between the lipidomes of suspended and sinking particles that indicate taxon-specific responses to mesoscale perturbations. Specifically, cyanobacteria did not appear to respond to increased concentrations of phosphorus in the subsurface of the cyclonic eddy, while eukaryotic microbes exhibit P-stress relief as reflected in their lipid signatures. Furthermore, we found that two classes of lipids drive differences between suspended and sinking material: sinking particles are comparatively enriched in phosphatidylcholine (PC, a membrane-associated lipid) and triacylglycerol (TAG, an energy storage lipid). We observed significantly greater export of TAGs from the cyclonic eddy as compared to the anticyclone and found that this flux is strongly correlated with the concentration of ballast minerals (PIC and biogenic silica). This increased export of TAGs from the cyclone, but not the anticyclone, suggests that cyclonic eddy perturbations may be a mechanism for the delivery of energy-rich organic material below the euphotic zone. 
    more » « less
  4. The proportions of carbon (C), nitrogen (N), and phosphorus (P) in surface ocean particulate matter deviate greatly from the canonical Redfield Ratio (C:N:P = 106:16:1) in space and time with significant implications for global carbon storage as this matter reaches the deep ocean. Recent work has revealed clear latitudinal patterns in C:N:P, yet the relative importance of ecological, physiological, or biochemical processes in creating these patterns is unclear. We present high-resolution, concurrent measurements of particulate C:N:P, macromolecular composition, environmental conditions, and plankton community composition from a transect spanning a subtropical-subpolar boundary, the North Pacific Transition Zone. We find that the summed contribution of macromolecules to particulate C, N, and P is consistent with, and provides interpretation for, particulate C:N:P patterns. A decline in particulate C:N from the subtropical to subpolar North Pacific largely reflects an increase in the relative contribution of protein compared to carbohydrate and lipid, whereas variation in C:P and N:P correspond to shifts in protein relative to polyphosphate, DNA, and RNA. Possible causes for the corresponding trends in C:N and macromolecular composition include physiological responses and changes in community structure of phytoplankton, which represented approximately 1/3rdof particulate C across the transect. Comparison with culture experiments and an allocation-based model of phytoplankton macromolecular composition suggest that physiological acclimation to changing nutrient supply is the most likely explanation for the latitudinal trend in C:N, offering both a mechanistic interpretation and biochemical basis for large-scale patterns in C:N:P. 
    more » « less
    Free, publicly-accessible full text available November 12, 2025
  5. NA (Ed.)
    Abstract In vitro incubations using natural marine communities can provide insight into community structure and function in ways that are challenging through field observations alone. We have designed a minimal metal incubation system for controlled and repeatable experimentation of microbial communities. The systems, dubbed Pelagic Ecosystem Research Incubators (PERIcosms), are 115 L, conical tanks designed to sample suspended, settled, and wall associated material for month long periods. PERIcosms combine some of the ecological advantages of large volume mesocosm incubations with the experimental ease and replication of bottle incubations, and their design is accessible for use by researchers without specialized training or travel to a designated incubation facility. Here, we provide a detailed description for the construction and implementation of PERIcosms and demonstrate their potential to promote replicable, diverse communities for several weeks under clean conditions using time‐series results from two field experiments. One field experiment utilized coastal waters collected from Santa Catalina Island, CA and the other oligotrophic waters collected offshore of Honolulu, HI. Biomass metrics (chlorophyll a and particulate carbon) along with 16S/18S DNA based community composition assessments were conducted to show that communities contained within PERIcosms remained alive and diverse for several weeks using a semi‐continuous culturing approach. We detail trace metal clean techniques that can be used to minimize external contamination, particularly for low dissolved iron environments. PERIcosms have the potential to facilitate natural community incubations which are needed to continue advancing our understanding of microbial ecology and geochemistry. 
    more » « less
  6. Abstract A considerable amount of particulate carbon produced by oceanic photosynthesis is exported to the deep-sea by the “gravitational pump” (~6.8 to 7.7 Pg C/year), sequestering it from the atmosphere for centuries. How particulate organic carbon (POC) is transformed during export to the deep sea however is not well understood. Here, we report that dominant suspended prokaryotes also found in sinking particles serve as informative tracers of particle export processes. In a three-year time series from oceanographic campaigns in the Pacific Ocean, upper water column relative abundances of suspended prokaryotes entrained in sinking particles decreased exponentially from depths of 75 to 250 m, conforming to known depth-attenuation patterns of carbon, energy, and mass fluxes in the epipelagic zone. Below ~250 m however, the relative abundance of suspended prokaryotes entrained in sinking particles increased with depth. These results indicate that microbial entrainment, colonization, and sinking particle formation are elevated at mesopelagic and bathypelagic depths. Comparison of suspended and sinking particle-associated microbes provides information about the depth-variability of POC export and biotic processes, that is not evident from biogeochemical data alone. 
    more » « less
  7. Abstract Strong purifying selection is considered a major evolutionary force behind small microbial genomes in the resource-poor photic ocean. However, very little is currently known about how the size of prokaryotic genomes evolves in the global ocean and whether patterns reflect shifts in resource availability in the epipelagic and relatively stable deep-sea environmental conditions. Using 364 marine microbial metagenomes, we investigate how the average genome size of uncultured planktonic prokaryotes varies across the tropical and polar oceans to the hadal realm. We find that genome size is highest in the perennially cold polar ocean, reflecting elongation of coding genes and gene dosage effects due to duplications in the interior ocean microbiome. Moreover, the rate of change in genome size due to temperature is 16-fold higher than with depth up to 200 m. Our results demonstrate how environmental factors can influence marine microbial genome size selection and ecological strategies of the microbiome. 
    more » « less
  8. Abstract The combination of taxa and size classes of phytoplankton that coexist at any location affects the structure of the marine food web and the magnitude of carbon fluxes to the deep ocean. But what controls the patterns of this community structure across environmental gradients remains unclear. Here, we focus on the North East Pacific Transition Zone, a ~ 10° region of latitude straddling warm, nutrient‐poor subtropical and cold, nutrient‐rich subpolar gyres. Data from three cruises to the region revealed intricate patterns of phytoplankton community structure: poleward increases in the number of cell size classes; increasing biomass of picoeukaryotes and diatoms; decreases in diazotrophs andProchlorococcus; and both increases and decreases inSynechococcus. These patterns can only be partially explained by existing theories. Using data, theory, and numerical simulations, we show that the patterns of plankton distributions across the transition zone are the result of gradients in nutrient supply rates, which control a range of complex biotic interactions. We examine how interactions such as size‐specific grazing, multiple trophic strategies, shared grazing between several phytoplankton size classes and heterotrophic bacteria, and competition for multiple resources can individually explain aspects of the observed community structure. However, it is the combination of all these interactions together that is needed to explain the bulk compositional patterns in phytoplankton across the North East Pacific Transition Zone. The synthesis of multiple mechanisms is essential for us to begin to understand the shaping of community structure over large environmental gradients. 
    more » « less
  9. Biogenic particles originating in the ocean’s well-lit, shallow layer help regulate Earth's climate by absorbing carbon dioxide from the atmosphere and subsequently sinking to the ocean’s depths. Subtropical gyres are the largest ocean habitats on Earth and are characterized by year-round high light, warm temperatures, and low supply of nutrients. However, even in persistently these low-nutrient regions, conditions vary on multiple temporal and spatial scales, making low-frequency observations—even monthly—difficult to interpret. 
    more » « less