Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synthesis of device-quality GeSn materials with higher Sn compositions is hindered by various factors, such as Sn segregation, clustering, and short-range ordering effects. In the present work, the impact of the clustering of Sn atoms in a GeSn semiconductor alloy was studied by density functional theory using SG15 pseudopotentials in a Synopsys QuantumATK tool, where the thermodynamic stability, effective band structure, indirect and direct bandgaps, and density of states (DOS) were computed to highlight the difference between a cluster-free random GeSn alloy and a GeSn alloy with Sn–Sn clusters. A 54-atom bulk Ge1–xSnx (x = 3.71%–27.77%) supercell was constructed with cluster-free and a first nearest neighbor Sn–Sn clustered GeSn alloy at each composition for this work. Computation using the generalized gradient approximation exchange-correlation functional showed that the thermodynamic stability of GeSn was reduced due to the clustering of Sn, which increased the formation energy of the GeSn alloys by increasing the Hartree potential energy and exchange-correlation energy. Moreover, with the effective band structure of the GeSn material at a Sn composition of ∼22%, both direct (Eg,Γ) and indirect (Eg,L) bandgaps decreased by a large margin of 40.76 and 120.17 meV, respectively, due to Sn–Sn clustering. On the other hand, Eg,Γ and Eg,L decrease is limited to 0.5 and 12.8 meV, respectively, for Sn composition of ∼5.6%. Similar impacts were observed on DOS, in an independent computation without deducing from the electronic band structure, where the width of the forbidden band reduces due to the clustering of Sn atoms in GeSn. Moreover, using the energy bandgaps of GeSn computed with the assumption of it being a random alloy having well-dispersed Sn atoms needs revision by incorporating clustering to align with the experimentally determined bandgap. This necessitates incorporating the effect of Sn atoms clustered together at varying distributions based on experimental characterization techniques such as atom probe tomography or extended x-ray absorption fine structure to substantiate the energy bandgap of the GeSn alloy at a particular composition with precision. Hence, considering the effect of Sn clusters during material characterization, beginning with the accurate energy bandgap characterization of GeSn would help in mitigating the effect of process variations on the performance characteristics of GeSn-based group IV electronic and photonic devices such as varying leakage currents in transistors and photodiodes as well as the deviation from the targeted wavelength of operation in lasers and photodetectors.more » « less
-
Germanium alloyed with α-tin (GeSn) transitions to a direct bandgap semiconductor of significance for optoelectronics. It is essential to localize the carriers within the active region for improving the quantum efficiency in a GeSn based laser. In this work, epitaxial GeSn heterostructure material systems were analyzed to determine the band offsets for carrier confinement: (i) a 0.53% compressively strained Ge 0.97 Sn 0.03 /AlAs; (ii) a 0.81% compressively strained Ge 0.94 Sn 0.06 /Ge; and (iii) a lattice matched Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As. The phonon modes in GeSn alloys were studied using Raman spectroscopy as a function of Sn composition, that showed Sn induced red shifts in wavenumbers of the Ge–Ge longitudinal optical phonon mode peaks. The material parameter b representing strain contribution to Raman shifts of a Ge 0.94 Sn 0.06 alloy was determined as b = 314.81 ± 14 cm −1 . Low temperature photoluminescence measurements were performed at 79 K to determine direct and indirect energy bandgaps of E g,Γ = 0.72 eV and E g,L = 0.66 eV for 0.81% compressively strained Ge 0.94 Sn 0.06 , and E g,Γ = 0.73 eV and E g,L = 0.68 eV for lattice matched Ge 0.94 Sn 0.06 epilayers. Chemical effects of Sn atomic species were analyzed using X-ray photoelectron spectroscopy (XPS), revealing a shift in Ge 3d core level (CL) spectra towards the lower binding energy affecting the bonding environment. Large valence band offset of Δ E V = 0.91 ± 0.1 eV and conduction band offset of Δ E C,Γ–X = 0.64 ± 0.1 eV were determined from the Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As heterostructure using CL spectra by XPS measurements. The evaluated band offset was found to be of type-I configuration, needed for carrier confinement in a laser. In addition, these band offset values were compared with the first-principles-based calculated Ge/InAlAs band alignment, and it was found to have arsenic up-diffusion limited to 1 monolayer of epitaxial GeSn overlayer, ruling out the possibility of defects induced modification of band alignment. Furthermore, this lattice matched GeSn/InAlAs heterostructure band offset values were significantly higher than GeSn grown on group IV buffer/substrates. Therefore, a lattice matched GeSn/InAlAs material system has large band offsets offering superior carrier confinement to realize a highly efficient GeSn based photonic device.more » « less