skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kask, Kalev"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Monte Carlo methods are powerful tools for solving problems involving complex probability distributions. Despite their versatility, these methods often suffer from inefficiencies, especially when dealing with rare events. As such, importance sampling emerged as a prominent technique for alleviating these challenges. Recently, a new scheme called Abstraction Sampling was developed that incorporated stratification to importance sampling over graphical models. However, existing work only explored a limited set of abstraction functions that guide stratification. This study introduces three newclasses of abstraction functions combined with seven distinct partitioning schemes, resulting in twenty-one new abstraction functions, each motivated by theory and intuition from both search and sampling domains. An extensive empirical analysis onover 400problemscomparesthese newschemes highlighting several well-performing candidates. 
    more » « less
  2. Monte Carlo methods are powerful tools for solving problems involving complex probability distributions. Despite their versatility, these methods often suffer from inefficiencies, especially when dealing with rare events. As such, importance sampling emerged as a prominent technique for alleviating these challenges. Recently, a new scheme called Abstraction Sampling was developed that incorporated stratification to importance sampling over graphical models. However, existing work only explored a limited set of abstraction functions that guide stratification. This study introduces three new classes of abstraction functions combined with seven distinct partitioning schemes, resulting in twenty-one new abstraction functions, each motivated by theory and intuition from both search and sampling domains. An extensive empirical analysis on over 400 problems compares these new schemes highlighting several well-performing candidates. 
    more » « less
  3. Cussens, James; Zhang, Kun (Ed.)
    A major limiting factor in graphical model inference is the complexity of computing the partition function. Exact message-passing algorithms such as Bucket Elimination (BE) require exponential memory to compute the partition function; therefore, approximations are necessary. In this paper, we build upon a recently introduced methodology called Deep Bucket Elimination (DBE) that uses classical Neural Networks to approximate messages generated by BE for large buckets. The main feature of our new scheme, renamed NeuroBE, is that it customizes the architecture of the neural networks, their learning process and in particular, adapts the loss function to the internal form or distribution of messages. Our experiments demonstrate significant improvements in accuracy and time compared with the earlier DBE scheme. 
    more » « less
  4. null (Ed.)
    Bucket Elimination (BE) is a universal inference scheme that can solve most tasks over probabilistic and deterministic graphical models exactly.However, it often requires exponentially high levels of memory (in the induced-width) preventing its execution. In the spirit of exploiting Deep Learning for inference tasks, in this paper, we will use neural networks to approximate BE.The resulting Deep Bucket Elimination (DBE) algorithm is developed for computing the partition function.We provide a proof-of-concept empirically using instances from several different benchmarks, showing that DBE can be a more accurate approximation than current state-of-the-art approaches for approximating BE (e.g. the mini-bucket schemes), especially when problems are sufficiently hard. 
    more » « less
  5. null (Ed.)
    Abstraction Sampling (AS) is a recently introduced enhancement of Importance Sampling that exploits stratification by using a notion of abstractions: groupings of similar nodes into abstract states. It was previously shown that AS performs particularly well when sampling over an AND/OR search space; however, existing schemes were limited to ``proper'' abstractions in order to ensure unbiasedness, severely hindering scalability. In this paper, we introduce AOAS, a new Abstraction Sampling scheme on AND/OR search spaces that allow more flexible use of abstractions by circumventing the properness requirement. We analyze the properties of this new algorithm and, in an extensive empirical evaluation on five benchmarks, over 480 problems, and comparing against other state of the art algorithms, illustrate AOAS's properties and show that it provides a far more powerful and competitive Abstraction Sampling framework. 
    more » « less