skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kasliwal, Mansi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Palomar Gattini-IR (PGIR) is a wide-field, synoptic infrared time domain survey covering ≈15,000 sq. deg. of the accessible sky at ≈1–3 night cadence to a depth ofJ≈ 13.0 and ≈14.9 Vega mag in and outside the Galactic plane, respectively. Here, we present the first data release ofJ-band light curves of Two Micron All Sky Survey (2MASS) sources within the survey footprint covering approximately the first four years of operations. We describe the construction of the source catalog based on 2MASS point sources, followed by exposure filtering criteria and forced PSF photometry. The catalog contains light curves of ≈286 million unique sources with 2MASS magnitudes ofJ< 15.5 mag, with a total of ≈50 billion photometric measurements and ≈20 billion individual source detections at signal-to-noise-ratio > 3. We demonstrate the photometric fidelity of the catalog by (i) quantifying the magnitude-dependent accuracy and uncertainty of the photometry with respect to 2MASS and (ii) comparing against forced PGIR aperture photometry for known variable sources. We present simple filtering criteria for selecting reliable photometric measurements as well as examplePythonnotebooks for users. This catalog is one of the largest compilation of nightly cadence, synoptic infrared light curves to date, comparable to those in the largest optical surveys, providing a stepping stone to upcoming infrared surveys in the coming decade.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. ABSTRACT

    We identify the progenitor star of SN 2023ixf in Messier 101 using Keck/NIRC2 adaptive optics imaging and pre-explosion Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) images. The supernova, localized with diffraction spikes and high-precision astrometry, unambiguously coincides with a progenitor candidate of $m_\text{F814W}=24.87\pm 0.05$ (AB). Given its reported infrared excess and semiregular variability, we fit a time-dependent spectral energy distribution (SED) model of a dusty red supergiant (RSG) to a combined data set of HST optical, ground-based near-infrared, and Spitzer Infrared Array Camera (IRAC) [3.6], [4.5] photometry. The progenitor resembles an RSG of $T_\text{eff}=3488\pm 39$ K and $\log (L/\mathrm{L}_\odot)=5.15\pm 0.02$, with a $0.13\pm 0.01$ dex ($31.1\pm 1.7$ per cent) luminosity variation at a period of $P=1144.7\pm 4.8$ d, obscured by a dusty envelope of $\tau =2.92\pm 0.02$ at $1\, \mu \text{m}$ in optical depth (or $A_\text{V}=8.43\pm 0.11$ mag). The signatures match a post-main-sequence star of $18.2_{-0.6}^{+1.3}\, \mathrm{M}_\odot$ in zero-age main-sequence mass, among the most massive SN II progenitor, with a pulsation-enhanced mass-loss rate of $\dot{M}=(4.32\pm 0.26)\times 10^{-4} \, \mathrm{M}_\odot \, \text{yr}^{-1}$. The dense and confined circumstellar material is ejected during the last episode of radial pulsation before the explosion. Notably, we find strong evidence for variations of $\tau$ or $T_\text{eff}$ along with luminosity, a necessary assumption to reproduce the wavelength-dependent variability, which implies periodic dust sublimation and condensation. Given the observed SED, partial dust obscuration remains possible, but any unobstructed binary companion over $5.6\, \mathrm{ M}_\odot$ can be ruled out.

     
    more » « less
  3. Abstract

    About 3%–10% of Type I active galactic nuclei (AGNs) have double-peaked broad Balmer lines in their optical spectra originating from the motion of gas in their accretion disk. Double-peaked profiles arise not only in AGNs, but occasionally appear during optical flares from tidal disruption events and changing-state AGNs. In this paper, we identify 250 double-peaked emitters (DPEs) among a parent sample of optically variable broad-line AGNs in the Zwicky Transient Facility (ZTF) survey, corresponding to a DPE fraction of 19%. We model spectra of the broad Hαemission-line regions and provide a catalog of the fitted accretion disk properties for the 250 DPEs. Analysis of power spectra derived from the 5 yr ZTF light curves finds that DPE light curves have similar amplitudes and power-law indices to other broad-line AGNs. Follow-up spectroscopy of 12 DPEs reveals that ∼50% display significant changes in the relative strengths of their red and blue peaks over long 10–20 yr timescales, indicating that broad-line profile changes arising from spiral arm or hotspot rotation are common among optically variable DPEs. Analysis of the accretion disk parameters derived from spectroscopic modeling provides evidence that DPEs are not in a special accretion state, but are simply normal broad-line AGNs viewed under the right conditions for the accretion disk to be easily visible. We include inspiraling supermassive black hole binary candidate SDSSJ1430+2303 in our analysis, and discuss how its photometric and spectroscopic variability is consistent with the disk-emitting AGN population in the ZTF survey.

     
    more » « less
    Free, publicly-accessible full text available January 24, 2025
  4. Abstract

    Optical surveys have become increasingly adept at identifying candidate tidal disruption events (TDEs) in large numbers, but classifying these generally requires extensive spectroscopic resources. Here we presenttdescore, a simple binary photometric classifier that is trained using a systematic census of ∼3000 nuclear transients from the Zwicky Transient Facility (ZTF). The sample is highly imbalanced, with TDEs representing ∼2% of the total.tdescoreis nonetheless able to reject non-TDEs with 99.6% accuracy, yielding a sample of probable TDEs with recall of 77.5% for a precision of 80.2%.tdescoreis thus substantially better than any available TDE photometric classifier scheme in the literature, with performance not far from spectroscopy as a method for classifying ZTF nuclear transients, despite relying solely on ZTF data and multiwavelength catalog cross matching. In a novel extension, we use “Shapley additive explanations” to provide a human-readable justification for each individualtdescoreclassification, enabling users to understand and form opinions about the underlying classifier reasoning.tdescorecan serve as a model for photometric identification of TDEs with time-domain surveys, such as the upcoming Rubin observatory.

     
    more » « less
  5. ABSTRACT

    Rapid identification of the optical counterparts of neutron star (NS) merger events discovered by gravitational wave detectors may require observing a large error region and sifting through a large number of transients to identify the object of interest. Given the expense of spectroscopic observations, a question arises: How can we utilize photometric observations for candidate prioritization, and what kinds of photometric observations are needed to achieve this goal? NS merger kilonova exhibits low ejecta mass (∼5 × 10−2 M⊙) and a rapidly evolving photospheric radius (with a velocity ∼0.2c). As a consequence, these sources display rapid optical-flux evolution. Indeed, selection based on fast flux variations is commonly used for young supernovae and NS mergers. In this study, we leverage the best currently available flux-limited transient survey – the Zwicky Transient Facility Bright Transient Survey – to extend and quantify this approach. We focus on selecting transients detected in a 3-day cadence survey and observed at a one-day cadence. We explore their distribution in the phase space defined by g–r, $\dot{g}$, and $\dot{r}$. Our analysis demonstrates that for a significant portion of the time during the first week, the kilonova AT 2017gfo stands out in this phase space. It is important to note that this investigation is subject to various biases and challenges; nevertheless, it suggests that certain photometric observations can be leveraged to identify transients with the highest probability of being fast-evolving events. We also find that a large fraction (≈75 per cent) of the transient candidates with $\vert\dot{g}\vert>0.7$ mag d−1, are cataclysmic variables or active galactic nuclei with radio counterparts.

     
    more » « less
  6. Abstract

    We present optical, radio, and X-ray observations of a rapidly evolving transient SN2019wxt (PS19hgw), discovered during the search for an electromagnetic counterpart to the gravitational-wave (GW) trigger S191213g. Although S191213g was not confirmed as a significant GW event in the off-line analysis of LIGO-Virgo data, SN2019wxt remained an interesting transient due to its peculiar nature. The optical/near-infrared (NIR) light curve of SN2019wxt displayed a double-peaked structure evolving rapidly in a manner analogous to currently known ultrastripped supernovae (USSNe) candidates. This double-peaked structure suggests the presence of an extended envelope around the progenitor, best modeled with two components: (i) early-time shock-cooling emission and (ii) late-time radioactive56Ni decay. We constrain the ejecta mass of SN2019wxt atMej≈ 0.20M, which indicates a significantly stripped progenitor that was possibly in a binary system. We also followed up SN2019wxt with long-term Chandra and Jansky Very Large Array observations spanning ∼260 days. We detected no definitive counterparts at the location of SN2019wxt in these long-term X-ray and radio observational campaigns. We establish the X-ray upper limit at 9.93 × 10−17erg cm−2s−1and detect an excess radio emission from the region of SN2019wxt. However, there is little evidence for SN1993J- or GW170817-like variability of the radio flux over the course of our observations. A substantial host-galaxy contribution to the measured radio flux is likely. The discovery and early-time peak capture of SN2019wxt in optical/NIR observations during EMGW follow-up observations highlight the need for dedicated early, multiband photometric observations to identify USSNe.

     
    more » « less
  7. Abstract

    While the vast majority of tidal disruption events (TDEs) have been identified by wide-field sky surveys in the optical and X-ray bands, recent studies indicate that a considerable fraction of TDEs may be dust obscured and thus preferentially detected in the infrared (IR) wave bands. In this Letter, we present the discovery of a luminous mid-IR nuclear flare (termed WTP14adbjsh), identified in a systematic transient search of archival images from the NEOWISE mid-IR survey. The source reached a peak luminosity ofL≃ 1043erg s−1at 4.6μm in 2015 before fading in the IR with a TDE-likeFt−5/3decline, radiating a total of more than 3 × 1051erg in the last 7 yr. The transient event took place in the nearby galaxy NGC 7392, at a distance of around 42 Mpc; yet, no optical or X-ray flare is detected. We interpret the transient as the nearest TDE candidate detected in the last decade, which was missed at other wavelengths due to dust obscuration, hinting at the existence of TDEs that have been historically overlooked. Unlike most previously detected TDEs, the transient was discovered in a star-forming galaxy, corroborating earlier suggestions that dust obscuration suppresses significantly the detection of TDEs in these environments. Our results demonstrate that the study of IR-detected TDEs is critical in order to obtain a complete understanding of the physics of TDEs and to conclude whether TDEs occur preferentially in a particular class of galaxies.

     
    more » « less
  8. ABSTRACT

    The origin of cosmic high-energy neutrinos remains largely unexplained. For high-energy neutrino alerts from IceCube, a coincidence with time-variable emission has been seen for three different types of accreting black holes: (1) a gamma-ray flare from a blazar (TXS 0506+056), (2) an optical transient following a stellar tidal disruption event (TDE; AT2019dsg), and (3) an optical outburst from an active galactic nucleus (AGN; AT2019fdr). For the latter two sources, infrared follow-up observations revealed a powerful reverberation signal due to dust heated by the flare. This discovery motivates a systematic study of neutrino emission from all supermassive black hole with similar dust echoes. Because dust reprocessing is agnostic to the origin of the outburst, our work unifies TDEs and high-amplitude flares from AGN into a population that we dub accretion flares. Besides the two known events, we uncover a third flare that is coincident with a PeV-scale neutrino (AT2019aalc). Based solely on the optical and infrared properties, we estimate a significance of 3.6σ for this association of high-energy neutrinos with three accretion flares. Our results imply that at least ∼10 per cent of the IceCube high-energy neutrino alerts could be due to accretion flares. This is surprising because the sum of the fluence of these flares is at least three orders of magnitude lower compared to the total fluence of normal AGN. It thus appears that the efficiency of high-energy neutrino production in accretion flares is increased compared to non-flaring AGN. We speculate that this can be explained by the high Eddington ratio of the flares.

     
    more » « less
  9. Abstract

    We present an analysis of Type Ia supernovae (SNe Ia) from the Carnegie Supernova Project I and II and extend the Hubble diagram from optical to near-infrared wavelengths (uBgVriYJH). We calculate the Hubble constant,H0, using various distance calibrators: Cepheids, the tip of the red giant branch (TRGB), and surface brightness fluctuations (SBFs). Combining all methods of calibration, we deriveH0= 71.76 ± 0.58 (stat) ± 1.19 (sys) km s−1Mpc−1from theBband andH0= 73.22 ± 0.68 (stat) ± 1.28 (sys) km s−1Mpc−1from theHband. By assigning equal weight to the Cepheid, TRGB, and SBF calibrators, we derive the systematic errors required for consistency in the first rung of the distance ladder, resulting in a systematic error of 1.2 ∼ 1.3 km s−1Mpc−1inH0. As a result, relative to the statistics-only uncertainty, the tension between the late-timeH0we derive by combining the various distance calibrators and the early-timeH0from the cosmic microwave background is reduced. The highest precision in SN Ia luminosity is found in theYband (0.12 ± 0.01 mag), as defined by the intrinsic scatter (σint). We revisit SN Ia Hubble residual-host mass correlations and recover previous results that these correlations do not change significantly between the optical and near-infrared wavelengths. Finally, SNe Ia that explode beyond 10 kpc from their host centers exhibit smaller dispersion in their luminosity, confirming our earlier findings. A reduced effect of dust in the outskirts of hosts may be responsible for this effect.

     
    more » « less
  10. ABSTRACT

    A growing number of supernovae (SNe) are now known to exhibit evidence for significant interaction with a dense, pre-existing, circumstellar medium (CSM). SNe Ibn comprise one such class that can be characterized by both rapidly evolving light curves and persistent narrow He i lines. The origin of such a dense CSM in these systems remains a pressing question, specifically concerning the progenitor system and mass-loss mechanism. In this paper, we present multiwavelength data of the Type Ibn SN 2020nxt, including HST/STIS ultraviolet spectra. We fit the data with recently updated CMFGEN models designed to handle configurations for SNe Ibn. The UV coverage yields strong constraints on the energetics and, when combined with the CMFGEN models, offer new insight on potential progenitor systems. We find the most successful model is a ≲4 M⊙ helium star that lost its $\sim 1\, {\rm M}_\odot$ He-rich envelope in the years preceding core collapse. We also consider viable alternatives, such as a He white dwarf merger. Ultimately, we conclude at least some SNe Ibn do not arise from single, massive (>30 M⊙) Wolf–Rayet-like stars.

     
    more » « less
    Free, publicly-accessible full text available May 6, 2025