Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pulsar timing arrays (PTAs) are ensembles of millisecond pulsars observed for years to decades. The primary goal of PTAs is to study gravitational-wave astronomy at nanohertz frequencies, with secondary goals of undertaking other fundamental tests of physics and astronomy. Recently, compelling evidence has emerged in established PTA experiments for the presence of a gravitational-wave background. To accelerate a confident detection of such a signal and then study gravitational-wave emitting sources, it is necessary to observe a larger number of millisecond pulsars to greater timing precision. The SKA telescopes, which will be a factor of three to four greater in sensitivity compared to any other southern hemisphere facility, is poised to make such an impact. In this chapter, we motivate an SKAO pulsar timing array (SKAO PTA) experiment. We discuss the classes of gravitational waves present in PTA observations and how an SKAO PTA can detect and study them. We then describe the sources that can produce these signals. We discuss the astrophysical noise sources that must be mitigated to undertake the most sensitive searches. We then describe a realistic PTA experiment implemented with the SKA and place it in context alongside other PTA experiments likely ongoing in the 2030s. We describe the techniques necessary to search for gravitational waves in the SKAO PTA and motivate how very long baseline interferometry can improve the sensitivity of an SKAO PTA. The SKAO PTA will provide a view of the Universe complementary to those of the other large facilities of the 2030s.more » « less
-
ABSTRACT A pulsar’s pulse profile gets broadened at low frequencies due to dispersion along the line of sight or due to multipath propagation. The dynamic nature of the interstellar medium makes both of these effects time-dependent and introduces slowly varying time delays in the measured times-of-arrival similar to those introduced by passing gravitational waves. In this article, we present an improved method to correct for such delays by obtaining unbiased dispersion measure (DM) measurements by using low-frequency estimates of the scattering parameters. We evaluate this method by comparing the obtained DM estimates with those, where scatter-broadening is ignored using simulated data. A bias is seen in the estimated DMs for simulated data with pulse-broadening with a larger variability for a data set with a variable frequency scaling index, $$\alpha$$, as compared to that assuming a Kolmogorov turbulence. Application of the proposed method removes this bias robustly for data with band averaged signal-to-noise ratio larger than 100. We report the measurements of the scatter-broadening time and $$\alpha$$ from analysis of PSR J1643$$-$$1224, observed with upgraded Giant Metrewave Radio Telescope as part of the Indian Pulsar Timing Array experiment. These scattering parameters were found to vary with epoch and $$\alpha$$ was different from that expected for Kolmogorov turbulence. Finally, we present the DM time-series after application of this technique to PSR J1643$$-$$1224.more » « less
-
Lignin valorization is being intensely pursued via tandem catalytic depolymerization and biological funneling to produce single products. In many lignin depolymerization processes, aromatic dimers and oligomers linked by carbon–carbon bonds remain intact, necessitating the development of enzymes capable of cleaving these compounds to monomers. Recently, the catabolism oferythro-1,2-diguaiacylpropane-1,3-diol (erythro-DGPD), a ring-opened lignin-derived β-1 dimer, was reported inNovosphingobium aromaticivorans. The first enzyme in this pathway, LdpA (formerly LsdE), is a member of the nuclear transport factor 2 (NTF-2)-like structural superfamily that convertserythro-DGPD to lignostilbene through a heretofore unknown mechanism. In this study, we performed biochemical, structural, and mechanistic characterization of theN. aromaticivoransLdpA and another homolog identified inSphingobiumsp. SYK-6, for which activity was confirmed in vivo. For both enzymes, we first demonstrated that formaldehyde is the C1reaction product, and we further demonstrated that both enantiomers oferythro-DGPD were transformed simultaneously, suggesting that LdpA, while diastereomerically specific, lacks enantioselectivity. We also show that LdpA is subject to a severe competitive product inhibition by lignostilbene. Three-dimensional structures of LdpA were determined using X-ray crystallography, including substrate-bound complexes, revealing several residues that were shown to be catalytically essential. We used density functional theory to validate a proposed mechanism that proceeds via dehydroxylation and formation of a quinone methide intermediate that serves as an electron sink for the ensuing deformylation. Overall, this study expands the range of chemistry catalyzed by the NTF-2-like protein family to a prevalent lignin dimer through a cofactorless deformylation reaction.more » « less
An official website of the United States government
