RationaleEffective analytical techniques are needed to characterize lignin products for the generation of renewable carbon sources. Application of matrix‐assisted laser desorption/ionization (MALDI) in lignin analysis is limited because of poor ionization efficiency. In this study, we explored the potential of cationization along with a 2,5‐dihydroxyacetophenone (DHAP) matrix to characterize model lignin oligomers. MethodsSynthesized lignin oligomers were analyzed using the developed MALDI method. Two matrix systems, DHAP and α‐cyano‐4‐hydroxycinnamic acid (CHCA), and three cations (lithium, sodium, silver) were evaluated using a Bruker UltraFlextreme time‐of‐flight mass spectrometer. Instrumental parameters, cation concentration, matrix, sample concentrations, and sample spotting protocols were optimized for improved results. ResultsThe DHAP/Li+combination was effective for dimer analysis as lithium adducts. Spectra from DHP and ferric chloride oligomers showed improved signal intensities up to decamers (m/z1823 for the FeCl3system) and provided insights into differences in the oligomerization mechanism. Spectra from a mixed DHP oligomer system containing H, G, and S units showed contributions from all monolignols within an oligomer level (e.g. tetramer level). ConclusionsThe DHAP/Li+method presented in this work shows promise to be an effective analytical tool for lignin analysis by MALDI and may provide a tool to assess lignin break‐down efforts facilitating renewable products from lignin.
more »
« less
Biochemical and structural characterization of a sphingomonad diarylpropane lyase for cofactorless deformylation
Lignin valorization is being intensely pursued via tandem catalytic depolymerization and biological funneling to produce single products. In many lignin depolymerization processes, aromatic dimers and oligomers linked by carbon–carbon bonds remain intact, necessitating the development of enzymes capable of cleaving these compounds to monomers. Recently, the catabolism oferythro-1,2-diguaiacylpropane-1,3-diol (erythro-DGPD), a ring-opened lignin-derived β-1 dimer, was reported inNovosphingobium aromaticivorans. The first enzyme in this pathway, LdpA (formerly LsdE), is a member of the nuclear transport factor 2 (NTF-2)-like structural superfamily that convertserythro-DGPD to lignostilbene through a heretofore unknown mechanism. In this study, we performed biochemical, structural, and mechanistic characterization of theN. aromaticivoransLdpA and another homolog identified inSphingobiumsp. SYK-6, for which activity was confirmed in vivo. For both enzymes, we first demonstrated that formaldehyde is the C1reaction product, and we further demonstrated that both enantiomers oferythro-DGPD were transformed simultaneously, suggesting that LdpA, while diastereomerically specific, lacks enantioselectivity. We also show that LdpA is subject to a severe competitive product inhibition by lignostilbene. Three-dimensional structures of LdpA were determined using X-ray crystallography, including substrate-bound complexes, revealing several residues that were shown to be catalytically essential. We used density functional theory to validate a proposed mechanism that proceeds via dehydroxylation and formation of a quinone methide intermediate that serves as an electron sink for the ensuing deformylation. Overall, this study expands the range of chemistry catalyzed by the NTF-2-like protein family to a prevalent lignin dimer through a cofactorless deformylation reaction.
more »
« less
- Award ID(s):
- 2153972
- PAR ID:
- 10505405
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 4
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Lignin-derivable bisphenols are potential alternatives to bisphenol A (BPA), a suspected endocrine disruptor; however, a greater understanding of structure–activity relationships (SARs) associated with such lignin-derivable building blocks is necessary to move replacement efforts forward. This study focuses on the prediction of bisphenol estrogenic activity (EA) to inform the design of potentially safer BPA alternatives. To achieve this goal, the binding affinities to estrogen receptor alpha (ERα) of lignin-derivable bisphenols were calculated via molecular docking simulations and correlated to median effective concentration (EC 50 ) values using an empirical correlation curve created from known EC 50 values and binding affinities of commercial (bis)phenols. Based on the correlation curve, lignin-derivable bisphenols with binding affinities weaker than ∼−6.0 kcal mol −1 were expected to exhibit no EA, and further analysis suggested that having two methoxy groups on an aromatic ring of the bio-derivable bisphenol was largely responsible for the reduction in binding to ERα. Such dimethoxy aromatics are readily sourced from the depolymerization of hardwood biomass. Additionally, bulkier substituents on the bridging carbon of lignin-bisphenols, like diethyl or dimethoxy, were shown to weaken binding to ERα. And, as the bio-derivable aromatics maintain major structural similarities to BPA, the resultant polymeric materials should possess comparable/equivalent thermal ( e.g. , glass transition temperatures, thermal decomposition temperatures) and mechanical ( e.g. , tensile strength, modulus) properties to those of polymers derived from BPA. Hence, the SARs established in this work can facilitate the development of sustainable polymers that maintain the performance of existing BPA-based materials while simultaneously reducing estrogenic potential.more » « less
-
Abstract Microbial aromatic catabolism offers a promising approach to convert lignin, a vast source of renewable carbon, into useful products. Aryl-O-demethylation is an essential biochemical reaction to ultimately catabolize coniferyl and sinapyl lignin-derived aromatic compounds, and is often a key bottleneck for both native and engineered bioconversion pathways. Here, we report the comprehensive characterization of a promiscuous P450 aryl-O-demethylase, consisting of a cytochrome P450 protein from the family CYP255A (GcoA) and a three-domain reductase (GcoB) that together represent a new two-component P450 class. Though originally described as converting guaiacol to catechol, we show that this system efficiently demethylates both guaiacol and an unexpectedly wide variety of lignin-relevant monomers. Structural, biochemical, and computational studies of this novel two-component system elucidate the mechanism of its broad substrate specificity, presenting it as a new tool for a critical step in biological lignin conversion.more » « less
-
Lignin depolymerization to aromatic monomers with high yields and selectivity is essential for the economic feasibility of many lignin-valorization strategies within integrated biorefining processes. Importantly, the quality and properties of the lignin source play an essential role in impacting the conversion chemistry, yet this relationship between lignin properties and lignin susceptibility to depolymerization is not well established. In this study, we quantitatively demonstrate how the detrimental effect of a pretreatment process on the properties of lignins, particularly β-O-4 content, limit high yields of aromatic monomers using three lignin depolymerization approaches: thioacidolysis, hydrogenolysis, and oxidation. Through pH-based fractionation of alkali-solubilized lignin from hybrid poplar, this study demonstrates that the properties of lignin, namely β-O-4 linkages, phenolic hydroxyl groups, molecular weight, and S/G ratios exhibit strong correlations with each other even after pretreatment. Furthermore, the differences in these properties lead to discernible trends in aromatic monomer yields using the three depolymerization techniques. Based on the interdependency of alkali lignin properties and its susceptibility to depolymerization, a model for the prediction of monomer yields was developed and validated for depolymerization by quantitative thioacidolysis. These results highlight the importance of the lignin properties for their suitability for an ether-cleaving depolymerization process, since the theoretical monomer yields grows as a second order function of the β-O-4 content. Therefore, this research encourages and provides a reference tool for future studies to identify new methods for lignin-first biomass pretreatment and lignin valorization that emphasize preservation of lignin qualities, apart from focusing on optimization of reaction conditions and catalyst selection.more » « less
An official website of the United States government

